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1. Introduction
The manual classification of fish within acoustic 
echograms is possible based on morphological 
characteristics resulting from the behaviour of 
fish schools (scattering strength, density, size, 
etc) and scattering relationships between 
acoustic frequencies [1].  However, manual 
classification is time consuming, prone to analyst 
error, and complicated by the presence of noise.  

The primary goal of this study is to automate the 
classification of salmon (sockeye and chum, 
Oncorhynchus nerka and O. keta), Pacific herring 
(Clupea pallasii), air bubbles, and the sea surface 
in echogram images. Accurately monitoring 
these fish species is important for maintaining 
their role in ecosystems and the economy [2].  
Bubbles and the sea surface are included to 
improve confidence and aid in manual 
verification of the results.  The automated 
classification was accomplished using a U-Net[3] 
convolutional neural network (CNN).

• U-Nets enable high-resolution pixel-level classification of echogram data with few 
(<100) training examples. 

• Context channels are shown to improve the classification results.  Animal behaviour is 
related to environment, so providing proxies for environmental context improves the 
classification results. 

• Classification of bubbles and small aggregation of salmon by a U-Net is very precise, and 
shown to out-perform manual annotations.  This is a challenging problem in echogram 
analysis and often results in discarding valuable data.  CNN’s are able to efficiently learn 
the morphological differences and frequency relationships to rapidly classify fish, even 
in the presence of bubbles. 

5. U-Net CNNs
CNNs treat echograms like images, and are able to “learn” morphological features like shape, 
texture, and relationships between input channels [7]. A U-Net style CNN was used because it 
is capable of producing pixel-level classification with a small training set.  The four (or six) 
channels of data are fed into the model, and the output is 5 channels corresponding to the 
herring, salmon, bubbles, sea-surface, and background class.  Convolutional kernels are 
activated by different features in the images, and subsequent layers of convolutions learn to 
recognize more complex features in the data. The training data set consisted of 71 one-hour 
echograms, and the test set consisted of 31 echograms.

Figure 4. Left to right:  (i) Inputs to the U-Net, tiles of size 256 x 256 pixels, (ii) Example activation 
from six filters at the first convolution layer of the U-Net, (iii) Classification scores output by the 
U-Net.  For (ii) and (iii), bright pixels indicate strong activations, or high scores for a given class.

3. Location

Figure 2. The AZFPs were moored on the sea-floor, during a multi-year study by Fisheries 
and Oceans Canada[4] to study juvenile salmon migration in Okisolla Channel on the 
central coast of British Columbia, Canada.  

2. AZFPs

Figure 1. The data used in this study were 
collected by upward facing multi-frequency 
Acoustic Zooplankton Fish Profiler (AZFP) 
echosounders. Echosounders use a narrow 
acoustic beam to vertically profile the water 
column and measure volume backscatter, Sv , 
from biological and physical phenomena. 

4. Model Inputs Figure 3. The AZFPs were equipped with 67, 125, 200, and 455 
kHz transducers. Profiles were collected in bursts, initiated every 
3.0 s, when each transducer would ping in sequence. These 
profiles are concatenated into a sequence of continuous time 
series and viewed as an image known as an echogram.  The 
profiles were recorded at a range resolution of 9.31 cm.  The 
variability in morphology and material properties amongst 
species results in multi-frequency scattering signatures that can 
be used to differentiate them [5]. 

Each acoustic frequency is sensitive to certain sizes of particles 
and different material properties, as visible in the four panels.  
Air bubbles scatter most intensely at 125 kHz [6], whereas 
salmon and herring have a more consistent strength across 
frequencies.  Juvenile salmon group in loose aggregations, 
generally in the upper 25 m of the water column, whereas 
herring school in dense narrow groups generally below 10 m 
depth.  These characteristics are used to manually annotate the 
data which is used to train the CNNs to recognize each class.   

In addition to the four echogram frequency channels, two 
simulated context channels for water depth and solar elevation 
angle (a proxy for sunlight) are provided as input to the U-Net.  
These provide spatial and temporal context.  

6. Classification
Figure 5. (a) corresponds to the 67 kHz Sv

data, (b) is the manual annotations of the 
data (c) is the classifications output by 
the U-Net. This example illustrates three 
areas where the U-Net has performed 
remarkable well. 
(i) The scattering group above this herring 
school is annotated as bubbles but the U-
Net predicts this as salmon. This is a 
scenario where the U-Net has out-
performed the annotation, such that the 
manual interpretation was incorrect.
(ii) Salmon are predicted by the U-Net 
but annotated manually as background. 
The manual annotation ignored groups 
less than 6 pixels, so the U-Net out-
performs the manual annotation.
(iii) Aggregations of salmon are in contact 
with bubbles at the surface. The U-Net 
can accurately predict the boundary 
between the two classes.

The classification is quantified with the F1-score, a harmonic mean 
between precision and recall. The six-channel U-Net classified 31 
echograms with F1-scores of 0.865 for bubbles, 0.873 for salmon 
and 0.930 for herring.  This outperforms the F1-score of the four-
channel U-Net by 0.01, 0.03, and 0.02, for bubbles, salmon, and 
herring, respectively.  

To get a clearer understanding of the performance, we look to the 
confusion matrix.  This shows how well the model has predicted 
each class (true positives on the diagonal) and which classes have 
issues with mis-classification (off-diagonal).  Salmon are very rarely 
misclassified as herring, and vice-versa. Salmon are also rarely 
classified as bubbles, which is very challenging to do manually.    The 
biggest issue is the number of false negatives of salmon and herring 
that have been misclassified as background. 

Figure 6. Confusion matrix for 31 one hour echograms for the six-
channel U-Net. Bold values represent the total number of pixels, and 
the percent corresponds to the amount of true pixels per class. 
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