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Abstract
The Chukchi Sea pelagic ecosystem continues to undergo dramatic oceanographic changes associated with reductions in sea 
ice and increasing temperatures over the last decades. Impacts of these changes on polar cod (Boreogadus saida), an ice-
associated pelagic fish that constitutes a key energetic link between lower and upper trophic levels, remain uncertain. Here, 
we use 4 years (2016–2019) of high-resolution acoustic and oceanographic data from the Chukchi Ecosystem Observatory to 
characterize temporal patterns in polar cod densities and identify its environmental drivers in years with contrasting sea ice 
and temperature conditions. Polar cod densities were 2–16 times greater with peaks occurring 14–60 days earlier in years with 
early sea ice retreat and higher water temperatures (2017 and 2019). The variance to mean relationship showed a decrease 
in variance for larger abundances in warmer years. Increased densities occurring earlier in the summer are attributed to a 
combination of earlier and increased transport of polar cod eggs and larvae from spawning areas, enhanced local primary 
and secondary production, and increased growth rates of fish due to higher temperatures. Earlier sea ice retreat and increases 
in temperature could temporarily benefit polar cod production in the NE Chukchi Sea but potential changes in prey quality, 
mismatch between polar cod and its prey, and increased competition with boreal fish species could have detrimental effects 
on polar cod populations with further warming. Such effects on polar cod populations could propagate through pelagic Arctic 
food webs impacting higher trophic levels and human communities.
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Introduction

The Chukchi Sea is a highly productive environment and 
represents a major gateway to the Arctic. Pacific water enter-
ing the Chukchi Sea shelf through the Bering Strait is rich 
in nutrients, phytoplankton, and zooplankton and a source 
of nutrients, heat, and freshwater. The Chukchi Sea environ-
ment is changing rapidly (Stroeve and Notz 2018; Daniel-
son et al. 2020b; Timmermans and Labe 2020). Increases in 

water temperature over the last century that have intensified 
since the 1990s (Steele et al. 2008; Danielson et al. 2020a) 
are coupled with drastic reductions in the duration of the sea 
ice covered season (Serreze et al. 2016), in sea ice and snow 
cover thickness (Kwok 2018), and in multiyear ice (Wu and 
Wang 2018). Changes in sea ice affect the entire underwater 
environment as it modulates underwater light irradiance, sea 
surface temperature, stratification/mixing of the water col-
umn, and subsequent nutrient replenishment (Mundy et al. 
2005; Hill et al. 2018b). These changes have promoted a 
likely increase in primary production (e.g. Arrigo and van 
Dijken 2015; Lewis et al. 2020), a shift towards smaller phy-
toplankton and zooplankton species (e.g. Hop et al. 2006; 
Li et al. 2009; Møller and Nielsen 2020), changes in species 
phenology (e.g. Søreide et al. 2010; Ji et al. 2013; Ardyna 
and Arrigo 2020), and northward expansion of boreal fish 
and zooplankton species distributions (e.g. Fossheim et al. 
2015; Polyakov et al. 2020).

Continued biological responses to large and rapid changes 
in the physical environment in the Chukchi Sea remain 
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poorly documented and uncertain (Grebmeier 2012; Post 
et al. 2013; Assmy et al. 2017; Drinkwater et al. 2018). This 
uncertainty is attributed to the net effects of spatial and tem-
poral change from multiple factors and limited, long term 
synchronous measurements of biological and physical envi-
ronmental components. A better understanding of biological 
responses to further changes in Arctic pelagic ecosystems 
requires identification of environmental factors associated 
with existing biological patterns, and the characterization 
(i.e. strength and shape) of those associations using concur-
rent physical and biological data across multiple years.

Polar cod (Boreogadus saida) is the most abundant fish 
species in the NE Chukchi Sea and has been identified as 
a species of potential commercial importance in the Arctic 
Fishery Management Plan (NPFMC 2009). This dominant 
species constitutes a key link between trophic levels within 
the Arctic ecosystem (Welch et al. 1992; Whitehouse et al. 
2014) being an important prey for birds, seals and whales 
(Bluhm and Gradinger 2008; Divoky et al. 2015; Harwood 
et al. 2015). Polar cod is often associated with sea ice, where 
it feeds and spawns (Graham and Hop 1995; Bouchard and 
Fortier 2011). Therefore, changes in sea ice concentrations 
and timing have both direct and indirect effects on temporal 
patterns of polar cod densities that in turn can affect the flow 
of energy in the Arctic food web and the services it pro-
vides to northern human communities (Darnis et al. 2012). 
Increased water temperature due to earlier annual sea ice 
retreat and increased inflow of warm Pacific waters into the 
Chukchi Sea have been hypothesized to enhance growth and 
transport of age-0 polar cod from spawning sites located in 
the south (Levine et al. 2021). However, changes in polar 
cod zooplankton prey quality and potential increases in pre-
dation and competition with boreal fish species could have 
detrimental effects on polar cod populations (Marsh and 
Mueter 2019). At this time, overall effects of environmental 
changes on polar cod remain uncertain.

Four years of continuous, high-resolution biological and 
physical data streams from the Chukchi Ecosystem Obser-
vatory (CEO) are available to: (1) characterize temporal 
patterns in polar cod densities, and (2) identify and quan-
tify relationships between polar cod densities and environ-
mental factors in years with contrasting sea ice and water 
temperature. Understanding bio-physical patterns in years 
with different sea ice conditions can help elucidate potential 
biological responses to further changes in the environment.

Methods

Study area

The CEO is located on the NE Chukchi Sea shelf between 
Hanna Shoal and Barrow Canyon (71° 35.976′ N, 161° 

31.621′ W) at 46 m depth (Fig. 1). Located on a documented 
hotspot of benthic biomass (Grebmeier et al. 2015), the CEO 
area attracts populations of upper trophic level consumers 
(Jay et al. 2012; Hannay et al. 2013). The CEO seascape var-
ies seasonally with a late fall and winter homogeneous water 
column with thickening sea ice and light-limited primary 
production (Weingartner et al. 2005b). Spring is character-
ized by diatoms and sea ice algae blooms triggered by the 
return of light (Gradinger 2009; Arrigo et al. 2014). When 
sea ice starts to melt after May, a stratified, warmer, nutrient-
rich water column triggers massive phytoplankton blooms 
under the ice (Arrigo et al. 2012) that continue through the 
summer (Hill et al. 2018a). In the fall, the intensification of 
winds and diminishing solar input allows the water column 
to re-homogenize and surface waters are replenished with 
nutrients that support fall phytoplankton blooms until sun-
light fades.

The Chukchi Sea continental shelf waters are fed by 
northward-flowing waters from the North Pacific carrying 
heat, freshwater, and nutrients through the Bering Strait 
(Fig. 1). This transport is driven by a seasonally fluctuating 
Pacific–Arctic pressure head (Stigebrandt 1984; Aagaard 
et al. 2006) that transmits 1.0–1.2 Sv during summer and 
0.5–0.6 Sv during winter months (Woodgate et al. 2005a). 
Water flowing through the Bering Strait is routed across the 
Chukchi Shelf along three main pathways: Herald Canyon in 
the west, Barrow Canyon in the east and the Central Chan-
nel across the mid-shelf, although wind-driven and other 
fluctuations episodically modify or even reverse these flows 
(Weingartner et al. 2005a; Woodgate et al. 2005; Danielson 
et al. 2014).

Environmental data

A set of environmental data collected at the CEO (https:// 
aoos. org/ proje ct- page/ ecosy stems/ chukc hi- ecosy stem- obser 
vatory/) during the study period (2016–2019) was supple-
mented with data from other sources for this study. Midwater 
measurements of salinity, temperature, photosynthetically 
active radiation (PAR), fluorescence, and nitrate concen-
tration were collected hourly at the CEO using a Sea-Bird 
Scientific SBE-16 SeaCat and a Satlantic SUNA sensor 
deployed at 28–33 m depth. Bottom temperature and salin-
ity measurements were collected hourly using a Sea-Bird 
SBE-37 MicroCat located at a depth of 43 m (seafloor depth 
of 46 m).

In situ fluorescence concentration measurements (a 
proxy for chlorophyll a concentration) were not available 
for the August 15th 2017–August 5th 2018 period and 
were predicted using the auto-sklearn machine learning 
tool kit (Feurer et al. 2015). The automatic machine learn-
ing framework takes a Bayesian optimization algorithm 
to automate feature engineering, regressor selection, and 

https://aoos.org/project-page/ecosystems/chukchi-ecosystem-observatory/
https://aoos.org/project-page/ecosystems/chukchi-ecosystem-observatory/
https://aoos.org/project-page/ecosystems/chukchi-ecosystem-observatory/
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hyper-parameter adjustment (Feurer et  al. 2015). This 
method fits a statistical model to observed in situ fluores-
cence based on daily averages of the variables described 
above, and then applies model-based predictions to estimate 
missing fluorescence values. Daily measurements of chloro-
phyll a from the MODIS sensor on the NASA Aqua satellite 
(https:// polar watch. noaa. gov/) were also included as a pre-
dictor variable in the models. A 10-fold cross validation data 
resampling method was used to split the dataset into training 
and testing samples. The coefficient of determination (R2) 
between observed and predicted fluorescence values was 
used as the optimization metric during training. Accuracy 
of predictions was evaluated using R2, mean absolute per-
centage error, and root mean squared error (RMSE).

Satellite-based, sea ice concentration (%) daily aver-
age data were downloaded from the National Snow and 

Ice Data Center (NSIDC) archive (http:// nsidc. org/ data/ 
seaice/ pm. html# pm_ seaice_ conc) (Maslanik and Stroeve 
1999). The onset of sea ice retreat and advance, defined as 
the first day with sea ice concentration less than 30% and 
exceeding 30%, were identified for each year (Serreze et al. 
2016). Daily sunrise and sunset times at the CEO were 
obtained using the ‘sunriset’ function of the R package 
maptools (v. 0.9-9, Bivand & Lewin-Koh 2019) and used 
to calculate daylength, a proxy of light irradiance through-
out the year. Daily air temperatures recorded at the nearby 
coastal city of Utqiaġvik were obtained from the U.S. cli-
mate data website (https:// www. uscli mated ata. com/ clima 
te/ barrow/ alaska/ united- states/ usak0 025). Hourly wind 
speed data for the CEO location were obtained from the 
Copernicus Climate Change Service ERA5 dataset (Hers-
bach et al. 2018).

Fig. 1  Study region map 
including bathymetry and main 
flow pathways. The yellow 
arrow represents the Beaufort 
Gyre, black arrows represent 
the Alaskan Coastal Current, 
the brown arrow represents the 
Siberian Coastal Current, and 
purple arrows represent path-
ways of Bering Shelf, Anadyr, 
and Chukchi shelf waters. The 
red circle indicates the location 
of the Chukchi Ecosystem 
Observatory. Scale in nautical 
miles (nm)

https://polarwatch.noaa.gov/
http://nsidc.org/data/seaice/pm.html#pm_seaice_conc
http://nsidc.org/data/seaice/pm.html#pm_seaice_conc
https://www.usclimatedata.com/climate/barrow/alaska/united-states/usak0025
https://www.usclimatedata.com/climate/barrow/alaska/united-states/usak0025
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Acoustic data acquisition, processing, 
and classification

Four years (2016–2019) of active acoustic data were used to 
characterize temporal patterns in polar cod densities in the 
Chukchi Sea (Fig. 1). Acoustic backscatter data, a proxy for 
fish density, were collected using an ASL Acoustic Zoo-
plankton Fish Profiler (http:// www. aslenv. com/ AZFP. html), 
deployed at 28–35 m depth (depending on year), looking 
upwards, and operating at 36, 125, 200, and 455 kHz.

Acoustic backscatter corresponding to fish was discrimi-
nated from other sources of backscatter using differences in 
mean volume backscattering strength (MVBS; Madureira 
et al. 1993; Kang et al. 2002; Korneliussen and Ona 2003) 
between 125 and 38 kHz data (ΔMVBS125-38 kHz). Fish 
Sv values were integrated into hourly averages from January 
1, 2016 to December 31, 2019. A detailed description of the 
CEO acoustic data collection and processing can be found 
in (Gonzalez et al. 2021).

Although no direct fish sampling was conducted in asso-
ciation with acoustic measurements, we can rely on catch 
data from fisheries surveys carried out in the NE Chukchi 
Sea to attribute most of the observed fish backscatter to polar 
cod. Polar cod accounted for 81–90% of total fish biomass 
and abundance from bottom (Barber et al. 1997; Goddard 
et al. 2014; Sigler et al. 2017; Logerwell et al. 2018) and 
pelagic (Lowry and Frost 1981; De Robertis et al. 2017) 
trawl surveys conducted from spring through autumn, ice-
free seasons. Polar cod constituted the majority of fish bio-
mass (63–99%) and abundance (93–99%) in sample catches 
from four midwater trawls conducted on Hanna Shoal in 
close proximity to the CEO in summer of 2017 (Levine and 
De Robertis pers. comm). Other species caught near Hanna 
Shoal included capelin (Mallotus villosus), Lumpenus sp., 
staghorn sculpin (Gymnocanthus tricuspis), and Liparidae 
snailfish. As further support of this backscatter classifica-
tion, age-0 (i.e. < 12 months old) polar cod was the dominant 
contributor to 38 kHz backscatter in the northern region of 
the Chukchi Sea in acoustic-trawl surveys conducted in 2012 
and 2013 as part of the Arctic Ecosystem integrated survey 
(De Robertis et al. 2017) and constituted > 85% of the catch 
per unit effort in a 2019 survey in the Chukchi Sea (Levine 
et al. 2021).

Data analysis

Characterization of temporal patterns in polar cod 
backscatter

Ecosystems have complex dynamics that result from the 
combined effects of population dynamics, environmental 
variability, and species interactions. Macroscopic patterns, 

detected using power laws, can provide general descriptions 
of a system without including detailed information on inter-
acting agents (Maurer 1999; Cohen et al. 2012; Segura et al. 
2021). These macroscopic patterns characterize dynamical 
and static patterns for comparison among populations, eco-
systems, or environmental conditions.

One effective way to summarize temporal patterns of a 
species is using Taylor's power law (TPL). TPL states that 
the spatial or temporal variance (V) in population abun-
dance (N) is related to the mean (M) population abundance: 
V[N] = aM[N]b (Taylor 1961), with the coefficient a and the 
scaling exponent b that approximates a value of 2. Conceptu-
ally, the scaling component b captures the level of aggrega-
tion between individuals in a population, while the coef-
ficient a is considered an artifact of sampling methodology 
(Taylor 1961). When mean–variance pairs are estimated 
from abundances measured through time at the same loca-
tion, fluctuations in the temporal aggregation of a popula-
tion are described. The scaling exponent has been used as 
an ecological metric to compare fish populations between 
regions of contrasting environmental characteristics (e.g. 
Mellin et al. 2010; Cobain et al. 2019), at varying levels of 
fishing pressure (e.g. Cohen et al. 2012; Fujiwara and Cohen 
2015; Kuo et al. 2016; Segura et al. 2021), and between fish 
species with different life histories (e.g. Kuo et al. 2016).

Daily mean and variance in backscattering strength from 
polar cod were calculated from hourly values of the vol-
ume backscatter coefficient [sv: units:  m−1; linear form of 
Sv (dB)]. Days with less than 5 backscatter observations 
were excluded from the analysis to avoid bias in variance 
estimates. The TPL exponent and coefficient were estimated 
from the linear relationship of the base 10 logarithms of the 
sample’s variance and mean described by:

where � is the residual error. TPL exponents and coefficients 
estimated using ordinary least squares linear relationships 
were compared among years. The null expectation for TPL 
for temporal variation is that the slope of the log-variance 
versus log-mean plot equals 2. Confidence intervals (95% 
level) were used to contrast estimated scaling exponents 
against the null hypothesis and to compare the exponents 
among years.

Environmental drivers of polar cod densities

To identify associations between polar cod densities and 
environmental variables at the CEO we used Generalized 
Additive Models (GAMs). GAMs are nonlinear regres-
sion models in which relationships between the response 
variable and predictor variables are modeled using non-
parametric smooth functions (Hastie and Tibshirani 1990; 

log10
(

V
[

sV
])

= log10(a) + blog10
(

M
[

sV
])

+ �,

http://www.aslenv.com/AZFP.html
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Wood 2004, 2017). GAMs represent an effective modeling 
approach for assessing responses of fish communities to 
environmental factors (e.g. Sigler et al. 2015; Logerwell 
et al. 2018; Forster et al. 2020). The advantage of this 
method is that it is not necessary to specify the relation-
ship between the variables a priori as these are determined 
from the data. Specifically, given a response variable y and 
a set of m predictor variables x (covariates), the relation-
ship between the two is established by:

The error term, ei is generally assumed to be independ-
ent and identically distributed with zero mean and com-
mon variance. The sj are smooth nonparametric functions 
estimated using thin plate regression splines (Wood 2017). 
Smoothing parameters were selected using restricted max-
imum likelihood (REML) which penalizes overfitting more 
than other methods (Wood 2011).

Daily averages of MVBS attributed to polar cod were 
used as a response variable. Days with no backscatter (7% 
of measurements) were excluded so fitted GAMs describe 
the densities of polar cod when present. Daily averages 
of midwater and bottom temperature and salinity, sea ice 
concentration, number of days after sea ice retreat, air 
temperature, chlorophyll a concentration, PAR, nitrate 
concentration, wind speed, and daylength were included 
as covariates in candidate models. Year was included as a 
factor in all models. Time series of environmental covari-
ates included in candidate GAMs are included in Online 
Resource 1. Collinearity among covariates was identified 
from the variance inflation factor (VIF) using a value of 

yi = � +

m
∑

j=1

sj
(

xji
)

+ ei.

less than 5 as a cutoff for inclusion of covariates in the 
same candidate model (Zuur et al. 2009).

GAMs were fitted using the mgcv (version 1.8-38; Wood 
2017) package in R with a Gaussian distribution and iden-
tity link function. To account for autocorrelation in the time 
series, an AR(1) (i.e. autocorrelation of order one) term was 
included in all candidate models. The model with the lowest 
Akaike information criterion (AIC) was selected. Residu-
als from each model were visually compared to the normal 
distribution using quantile–quantile plots. Autocorrelation 
functions (ACF), and partial ACFs (PACF) were used to 
check for remaining autocorrelation within the residuals.

Results

Temporal patterns in environmental variables 
and polar cod backscatter

Our study spanned years with highest temperatures and 
lowest sea ice conditions on record but strong differences 
in temperature and sea ice conditions among sample years 
were observed. Years 2016 and 2018 (hereafter “cold” years) 
were characterized by later sea ice retreat, earlier advance, 
greater sea ice concentration, and lower water temperatures 
than 2017 and 2019 (hereafter “warm” years). Sea ice retreat 
occurred on July 13th 2016, June 3rd 2017, July 14th 2018, 
and May 12th 2019 (Fig. 2a). Sea ice advance occurred 
on November 21st 2016, December 5th 2017, November 
23rd 2018, and December 7th 2019 (Fig. 2a). This resulted 
in longer open water periods (i.e. period between sea ice 
retreat and advance dates) in 2017 (185 days) and 2019 
(209 days) than in 2016 (131 days) and 2018 (132 days). 
We emphasize that years labeled here as “cold” and “warm” 

Fig. 2  Biological and physi-
cal patterns at the Chukchi 
Ecosystem Observatory. a Daily 
sea ice concentration from satel-
lite data. Grey circles represent 
values from 1978 to 2015 and 
the grey line represents the 
average sea ice concentration 
for that period. b Daily averages 
of in situ measurements of 
midwater temperature. c Daily 
mean backscattering strength 
(mean Sv) values corresponding 
to polar cod. Lines represent 
weekly moving averages
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were all characterized by highest temperatures and lowest 
sea ice conditions on record. Retreat and advance dates in 
2016–2019 were up to 2 months earlier than the historic 
mean retreat date (July 27th) and about 1 month later than 
the historic advance date (October 31st) resulting in open 
water seasons longer than the historic average of 96 days 
for all years. Annual average sea ice concentrations were 
lower in 2017 (43%) and 2019 (40%) than in 2016 (58%) 
and 2018 (57%). These annual average sea ice concentra-
tions were below the historic (1975–2015) average (67%) 
in all sample years.

Maximum midwater temperatures recorded at the CEO 
were greater in 2017 (3.87 °C) and 2019 (3.83 °C) than 
in 2016 (2.11 °C) and 2018 (1.31 °C) (Fig. 2b). Midwater 
temperature peaks occurred on October 28th in 2016, Octo-
ber 6th in 2017, November 15th in 2018, and on Novem-
ber 1st in 2019 (Fig. 2b). Average midwater temperatures 
were − 1.04 °C in 2016, − 0.53 °C in 2017, − 1.31 °C in 
2018, and − 1.02 °C in 2019. Midwater temperatures in 2017 
and 2019 were higher than in 2016 and 2018 during late 
spring–early summer (June–mid July) and during Autumn 
(late October–mid November) (Fig. 2b).

Peaks in fish acoustic backscatter attributed to polar cod 
had higher amplitude and occurred earlier in the summer in 

“warm” compared to “cold” years (Fig. 2c). Peak Sv values 
of − 80.97 dB (9/29/2016), − 70.60 (7/31/2017), − 82.81 dB 
(9/2/2018), and − 77.80 dB (8/19/2019) were observed in 
the 7-day smoothed series (Fig. 2c). In “warm” years, peak 
values were ~ 3–12 dB greater than in “cold” years corre-
sponding to ~ 2–16 times more fish in years with earlier sea 
ice retreat and higher water temperatures. Peaks in Sv values 
occurred 14–60 days earlier in “warm” than “cold” years. 
Peaks in Sv occurred 78 days after sea ice retreat in 2016, 
58 days in 2017, 50 days in 2018, and 99 days in 2019.

Highest fish acoustic backscatter values were associated 
with Modified Winter Water (MWW), cool Shelf Water 
(cSW), and warm Shelf Water (wSW) with temperatures 
above − 1 °C and salinities of 31.5–32.5 (Fig. 3). wSW was 
only present in 2017 and 2019 when overall temperatures 
were higher in the study area (Fig. 3). Days with an empty 
water column only occurred in presence of Winter Water 
(WW, Fig. 3).

Medians of the non-zero backscatter values were greater 
(Kruskal–Wallis p < 0.05) in “warm” years (− 95.10 dB 
in 2017 and − 95.31  dB in 2019) than in “cold” years 
(− 101.47 dB in 2016 and − 101.10 dB in 2018) (Fig. 4). 
Most frequent backscatter values were ~  − 100 dB all years 
but a second mode at relatively high backscatter values 

Fig. 3  Daily averages of mid-
water temperature and salinity 
measured at 33 m depth at the 
Chukchi Ecosystem Observa-
tory during 2016–2019. Color 
bar represents mean volume 
backscattering strength (mean 
Sv, dB) corresponding to fish. 
Classification of water masses 
was based on Danielson et al. 
(2017, 2020). Abbreviations 
include: MWW Modified Winter 
Water, WW Winter Water, 
wSW warm Shelf Water, cSW 
cool Shelf Water, AW Anadyr 
Water. The orange and blue 
areas represent Bering–Chukchi 
Summer Water (BCSW) and 
Bering–Chukchi Winter Water 
(BCWW), respectively
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(greater than ~  − 85 dB) was observed during “warm” years 
(Fig. 4). During “cold” years, the percentages of hours with 
no backscatter were greater (69% in 2016 and 63% in 2018) 
than in “warm” years (51% in 2017 and 43% in 2019).

Peaks in variance occurred 27–56 days earlier in “warm” 
years than in “cold” years (Fig. 5). Highest variances were 
observed during autumn months in 2016 (October 7th) and 
2018 (September 11th) and in the summer in 2017 (August 
12th) and 2019 (August 14th). Overall, variability was high-
est in 2017 (− 153.40 dB) followed by 2016 (− 157.16 dB), 
2019 (− 167.03 dB), and 2018 (− 172.64 dB). In “warm” 
years, variance was higher than in “cold” years during 
July–September and mid-January–April.

Significant relationships between log-variance and 
log-mean sv were observed all years (p < 0.05) with coef-
ficients of determination (R2) greater than 0.94 (Fig. 6). 

Variance increased faster (i.e. slope b significantly greater) 
in 2016 (b = 2.36 [95% CI 2.24, 2.48]) and 2018 (b = 2.16 
[2.07, 2.25]) than in 2017 (b = 1.79 [1.73, 1.86]) and 2019 
(b = 1.93 [1.87, 1.98]). The scaling exponent b was signifi-
cantly greater than the theoretical value of 2 in “cold” years, 
and significantly below 2 in “warm” years (Fig. 6). These 
observations suggest that overall, polar cod at the CEO expe-
riences greater temporal fluctuations (i.e. shorter persistence 
time) in density during “cold” years than in “warm” years. 
Regression lines intersect each other at  log10M(sv) ~  − 9 dB 
(corresponding to a mean Sv of − 90 dB) with “warm” years 
exhibiting higher variability at low fish densities and lower 
variability at relatively high densities than “cold” years.

Average chlorophyll a concentrations from in situ fluo-
rescence measurements were higher in 2017 (1.04 mg  m−3) 
and 2019 (1.16 mg  m−3) compared to 2016 (0.64 mg  m−3) 

Fig. 4  Distribution of daily 
averages of hourly mean 
backscattering strength (mean 
Sv) values corresponding to 
polar cod (Boreogadus saida) 
for 2016–2019. The dashed line 
indicates the median

Fig. 5  Variance calculated over 
a 1-day period from hourly 
mean backscattering strength 
(mean Sv) values correspond-
ing to polar cod (Boreogadus 
saida). Lines represent LOW-
ESS smoothing with window 
size = 0.2 for each year
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and 2018 (0.82 mg  m−3) (Fig. 7a). Peaks in chlorophyll a 
occurred earlier and persisted over longer periods in “warm” 
years than in “cold” years (Fig. 7a). Multiple chlorophyll 
a peaks were observed from mid-May to August/Septem-
ber in 2017/2019 with the first peak observed in early June 
(8th–10th), 5–29 days after sea ice retreat (Fig. 7a). This 
indicates that an earlier sea ice retreat triggers and earlier 
phytoplankton blooms but not before June. In “cold” years 
highest chlorophyll a concentrations were observed from 
mid-June/July to mid-August in 2016/2018 with peak con-
centrations occurring once there was no sea ice in the area 

(Fig. 7a). Interannual variations in nutrient concentrations 
and PAR are shown in Online Resource 2.

Zooplankton backscatter was higher in spring and sum-
mer in “warm” than in “cold” years (Fig. 7b). In 2019 when 
sea ice retreat occurred in May, zooplankton densities 
were lower than in 2017, when sea ice retreat was in June 
(Fig. 7b). The medians of zooplankton backscatter distri-
butions were − 89.64 dB (2016) and − 83.74 dB (2018) in 
“cold” years, and − 77.13 dB (2017) and − 82.42 dB (2019) 
in “warm” years, with 2019 being higher but more similar 
to the median in “cold” years.

Fig. 6  Relationship between 
daily averages (M) and variance 
(V) calculated from hourly 
backscattering values corre-
sponding to polar cod (Bore-
ogadus saida) at the Chukchi 
Ecosystem Observatory. The 
quantity sv is the volume back-
scatter coefficient [linear form 
of volume integrated energy Sv 
(dB)], units:  m−1

Fig. 7  Daily averages of a 
in situ midwater (33 m depth) 
measurements of chlorophyll 
a fluorescence, and b mean 
volume backscattering strength 
(Mean Sv) corresponding to 
zooplankton at the Chukchi 
Ecosystem Observatory during 
2016–2019. Lines represent a 
7-day moving average
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Environmental drivers of polar cod densities

Polar cod acoustic backscatter was predominantly associated 
with days after sea ice retreat and, to a lesser extent, with 
bottom temperature, midwater salinity, PAR, daylength, and 
the cube of wind speed (Fig. 8; Table 1). The resulting GAM 
had an R2 of 0.63 and the autocorrelation of the residuals 
was reduced significantly by the inclusion of an autore-
gressive lag 1 process in the model (Online Resource 3). 

The association between polar cod and sea ice was positive 
from ~ 30 days before until ~ 100 days after sea ice retreat 
when fish densities started to decrease (Fig. 8a). The rela-
tionship between polar cod densities and bottom temperature 
was linear and slightly positive (Fig. 8b). Highest backscat-
ter values were observed at salinities above 32, cubed wind 
speed of less than 1000  (m3  s−3), PAR values of 5–7 molμ 
photons  m−2  s−1, and daylengths of 10–20 h (Fig. 8c–f). 
Parametric coefficients (i.e. intercepts) significantly differed 

Fig. 8  Partial effects of covari-
ates included in the polar cod 
(Boreogadus saida) backscatter 
Generalized Additive Model. 
Shaded areas indicate 95% 
confidence intervals. Points cor-
respond to residual values

Table 1  Results of Generalized 
Additive Models for polar cod 
(Boreogadus saida) backscatter 
at the Chukchi Ecosystem 
Observatory

Mw. temp. midwater temperature, mw. salinity midwater salinity, ice retreat days after sea ice retreat, ws 
wind speed, PAR photosynthetically active radiation, chl-a chlorophyll a concentration, sea ice % sea ice 
concentration, NO3 nitrate concentration, b. temp bottom temperature, b. salinity bottom salinity

Model AIC ∆AIC

Mw. temp. + ice retreat + mw. salinity +  ws3 + PAR + daylength 8791.14 0
B. temp. + ice retreat + mw. salinity + chl-a +  ws3 + PAR + daylength 8794.258 3.118
B. temp. + ice retreat + mw. salinity + chl-a +  ws3 + PAR + daylength +  NO3 8796.438 5.298
B. temp. + ice retreat + mw. salinity + chl-a +  ws3 + PAR 8809.9 18.76
Air temp. + mw. salinity + sea ice % +  NO3 + daylength + PAR + ws 8862.274 71.134
Mw. salinity + sea ice % +  NO3 + daylength + PAR + ws 8862.94 71.8
Mw. temp. + mw. salinity + sea ice % +  NO3 + daylength + PAR + ws 8863.786 72.646
Mw. temp. + mw. salinity + sea ice % +  NO3 + daylength + PAR + chl-a + ws 8866.059 74.919
B. temp. + mw. salinity + sea ice % +  NO3 + daylength + PAR + chl-a + ws 8866.621 75.481
B. temp. + mw. salinity + sea ice % +  NO3 + daylength + PAR + chl-a 8869.056 77.916
B. temp. + sea ice % + mw. salinity + chl-a +  ws3 + PAR 8891.294 100.154
B. temp. + sea ice % + mw. salinity + chl-a +  ws3 8896.673 105.533
B. temp. + sea ice % + mw. salinity + chl-a 8898.18 107.04
B. temp. + sea ice % 8910.002 118.862
B. temp. + sea ice % + b. salinity 8912.937 121.797
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between “cold” (2016 and 2018) and “warm” years (2017 
and 2019) (Online Resource 3).

Discussion

Temporal patterns in environmental variables 
and fish backscatter

Our data spanned years with contrasting sea ice and water 
temperature conditions that were associated with dramatic 
differences in fish density and phenology in the NE Chukchi 
Sea. Higher peaks in fish density and variance occurring ear-
lier in the summer during years with early sea ice retreat and 
high temperatures are attributed to a combination of (1) ear-
lier and increased transport of age-0 polar cod from spawn-
ing areas; (2) increased prey availability due to increased 
local primary production followed by increased secondary 
production due to an earlier sea ice retreat; and (3) increased 
growth rates of fish due to higher temperatures. A summary 
of temporal patterns of polar cod and relevant environmental 
variables is presented in Fig. 9.

The two sets of sea ice and water temperature character-
istics observed in 2016/2018 and 2017/2019 are attributed 
to contrasting northward heat fluxes through the Bering 
Strait. Sea ice retreat and advance dates in the Chukchi Sea 
are associated in part with the mean northward transport of 
relatively warm Pacific waters through the Bering Strait dur-
ing April–June and during the summer months, respectively 
(Serreze et al. 2019). In 2017, moorings in the Bering Strait 
recorded one of the highest heat inflows in the last three 
decades (Woodgate and Peralta-Ferriz 2021). This high heat 
inflow resulted from high water transport (~ 1.2 Sv) and tem-
peratures of 4 °C as early as June, ~ 0.2 Sv and 2° higher than 
those recorded in 2016, 2018, and the climatological average 
for the same month (Woodgate and Peralta-Ferriz 2021). 
This upstream observation is consistent with the resulting 
early sea ice retreat and the extended open water season in 
the Chukchi Sea during 2017 and probably 2019, the 2 years 
with lowest sea ice concentrations on record in the area (Ser-
reze et al. 2019). Greater northward heat fluxes through the 
Bering Strait and longer exposure to solar radiation due to 
earlier retreat and later advance of sea ice are also consistent 
with the higher temperatures (1.7–2.7 °C more) recorded 
at the CEO in 2017 and 2019 compared to 2016 and 2018.

Polar cod aggregations found in the NE Chukchi Shelf 
are mainly comprised of small, age-0 individuals possibly 
advected from spawning areas located further South (De 
Robertis et al. 2017; Forster et al. 2020; Levine et al. 2021). 
Polar cod potential spawning areas have been proposed near 
St. Lawrence Island in the northern Bering Sea, east of the 
Chukotka Peninsula in western Bering Strait, and the Beau-
fort Sea (Kono et al. 2016; Vestfals et al. 2019; Mueter et al. 

2020). Polar cod are known to spawn under sea ice during 
autumn and winter (Graham and Hop 1995), and early stages 
of polar cod are believed to be advected into the NE Chukchi 
Shelf by ocean currents in the spring (Forster et al. 2020; 
Levine et al. 2021). Higher fish densities occurring earlier in 
the summer at the CEO were associated with elevated north-
ward water transport from the northern Bering and southern 
Chukchi Seas into the northern Chukchi Sea in 2017 and 
2019. Additionally, highest backscatter values were observed 
in BCSW that flows north into the Chukchi Sea from the 
northern Bering Sea shelf (Danielson et al. 2017). In com-
bination, these water fluxes provide further support for the 
hypothesis that age-0 polar cod are advected from the South 
by prevailing northward currents in the spring, rather than 
potential spawning sites in the Beaufort Sea.

Earlier sea ice retreat and warmer waters could have 
enhanced polar cod survival by favoring early hatchers, 
which resulted in the high densities observed at the CEO in 
2017 and 2019. Polar cod larvae hatch under sea ice from 
January to July and develop in surface waters over spring 
and summer (Bouchard and Fortier 2011; Geoffroy et al. 
2016). In general, early hatchers (i.e. those hatching dur-
ing winter/early spring) have the advantage of an extended 

Fig. 9  Summary of temporal patterns in biological and physical vari-
ables in a “cold” years (2017 and 2019) and b “warm” years (2016 
and 2018) at the Chukchi Ecosystem Observatory. WW Winter Water, 
MWW Modified Winter Water, cSW cool Shelf Water, wSW warm 
Shelf water. See Danielson et al. (2020) for water mass descriptions
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growing season that leads to larger pre-winter sizes (For-
tier et al. 2006; Bouchard and Fortier 2011) at the end of 
the growth year. Large pre-winter sizes are associated with 
enhanced winter survival resulting from a combination 
of increased lipid content, predator avoidance, resistance 
to starvation, and physiological tolerance (e.g. Hunt et al. 
2011; Copeman et al. 2022). Later hatching when tempera-
ture, light, and food are at their maximum would result in a 
shorter growing season and sizes too small to ensure winter 
survival (Bouchard et al. 2017). It has been observed that 
early sea ice breakup favors higher densities of larger pre-
winter polar cod (Bouchard et al. 2017). In the Canadian 
Arctic, the biomass of juvenile polar cod in late September 
was 11 times greater in a year with an early May ice breakup 
(< 50% ice cover) compared to a late September ice breakup 
(Bouchard et al. 2017). These observations are consistent 
with the 2–16 times greater fish densities for a May/June sea 
ice retreat (2017 and 2019) compared to a July sea ice retreat 
(2016 and 2018) observed at the CEO.

Earlier ice retreat and warmer waters enhance growth and 
survival of early hatchers by increasing food availability ear-
lier in the year relative to years with late sea ice retreat (LeB-
lanc et al. 2019). Earlier phytoplankton blooms and extended 
periods of primary productivity have been observed in asso-
ciation with decreased sea ice in the Chukchi Sea, northern 
Barents Sea, and the Canadian Arctic (Zhang et al. 2015; 
Kahru et al. 2016; LeBlanc et al. 2019). An advanced and 
extended bloom results in an earlier and more intense pro-
duction of copepod nauplii and copepodites (LeBlanc et al. 
2019), the preferred prey of age-0 polar cod (Bouchard et al. 
2016). In this study, we observed that early sea ice retreat 
in June 2017 was associated with earlier and extended peri-
ods of primary production and higher zooplankton densi-
ties. However, an ice retreat before June in 2019 did not 
result in an earlier bloom, and lower zooplankton densities 
were observed compared to 2017. These observations sup-
port previous studies in the Canadian Arctic (LeBlanc et al. 
2019) and in the Bering Sea (Hunt et al. 2002), and suggest 
a potential mismatch between copepods and their food when 
the ice breaks earlier than June (Leu et al. 2011; Dezutter 
et al. 2019). Arctic copepod species such as Calanus glacia-
lis, time their seasonal migration, foraging, and reproduction 
to ice algae and phytoplankton blooms (Leu et al. 2011). 
A mismatch between C. glacialis and its food can result 
in a fivefold lower biomass of C. glacialis in the summer 
that could in turn affect the recruitment of juvenile polar 
cod and upper trophic levels (Leu et al. 2011). This is criti-
cal to age-0 polar cod as C. glacialis is a key prey species 
(Bouchard and Fortier 2020).

Polar cod typically disperse from nursery to adult habitats 
at greater depths (Geoffroy et al. 2016; Forster et al. 2020), 
likely the Beaufort and Chukchi Slopes and Arctic Basin 
(Levine et al. 2021), or colonize the pack ice as age-1 fish 

(David et al. 2016). Observed decreased fish densities after 
October at the CEO could be due to a downward vertical 
movement of polar cod to depths below the transducer and/
or to horizontal movement out of the Hanna Shoal area. In 
a previous study, we observed that fish targets descended 
to deeper waters after the summer, remained at depth until 
February when they started moving upwards in the water 
column, and reached depths closest to the surface by the 
end of the summer (Gonzalez et al. 2021b). These observa-
tions suggest that not all individuals may leave the area in 
autumn, but that some may remain at depth until February 
when they move upwards closer to the sea ice, in their sec-
ond year of life.

TPL scaling exponents (i.e. log–log regression slopes) 
from this study were within the typical b value range of 
1.5 to 2.5 (see Eisler et al. 2008) but varied among years 
with contrasting environmental conditions. In “warm” years, 
TPL slopes were significantly below the theoretical value of 
2 (Taylor 1961). Kilpatrick and Ives (2003) demonstrated 
how negative interactions among species in a community 
can produce TPL slopes smaller than 2, in a fashion that 
may be relevant to the NE Chukchi Sea. In warmer years, 
enhanced northward movement of Bering Sea species, espe-
cially walleye pollock (Gadus chalcogrammus; Levine et al. 
2021), could lead to increased interspecific competition and 
reductions of the TPL slope compared to “cold” years when 
polar cod is the dominant species (De Robertis et al. 2017). 
Increased abundance of age-0 polar cod in “warm” years 
could also increase intraspecific competition through can-
nibalism, a behavior previously reported for this species in 
the Beaufort and Chukchi Seas (Benoit et al. 2010; Gray 
et al. 2016) leading to reductions of the TPL slope. Observed 
lower fish temporal aggregation (i.e. lower temporal vari-
ability) at high fish densities in “warm” compared to “cold” 
years are consistent with observations reported in a previ-
ous study at the CEO (Gonzalez et al. 2021). Out-of-phase 
associations between water temperature and fish patchiness 
were observed with lowest fish and zooplankton aggrega-
tions occurring during months of highest fish and zooplank-
ton densities (July–November).

In “cold” years, when seasonality at the CEO is more 
accentuated (i.e. greater temporal variability), the TPL slope 
was greater than the theoretical value of two. Greater slopes 
suggest higher temporal aggregation (i.e. greater temporal 
fluctuations) in polar cod densities with shorter persistence. 
Overall, the TPL scaling exponent b seems able to track 
changes in fish density fluctuations under different sea ice 
and temperature conditions in the NE Chukchi Sea. This 
observation is consistent with previous empirical studies 
suggesting that TPL exponents contain ecologically relevant 
information (e.g. Cobain et al. 2019; Lagrue et al. 2015; Tay-
lor and Woiwod 1982) and can be useful ecosystem metrics 
(Cobain et al. 2019).
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Environmental drivers of temporal patterns in polar 
cod backscatter

Links between oceanographic variables and fish backscatter 
observed in our study suggest that seasonal sea ice dynamics 
and water mass advection are important for the ecology of 
age-0 polar cod. Sea ice conditions in winter and spring have 
been shown to explain polar cod densities in the summer 
(Bouchard et al. 2017; LeBlanc et al. 2019). Via bottom-
up control, the timing of sea ice retreat affects the timing, 
amplitude, and duration of sea ice algae and phytoplankton 
blooms, which stimulates and supports secondary produc-
tivity, and ultimately determines available food resources 
for age-0 polar cod. LeBlanc et al. (2019) observed that 
zooplankton backscatter in August was more strongly cor-
related to ice breakup date and phytoplankton bloom onset 
date than to chlorophyll a concentration, indicating that the 
duration of the season of food availability rather than food 
abundance was likely the primary driver of zooplankton bio-
mass in late summer. In our study, significance of days after 
sea ice retreat, daylength, and PAR, but not of chlorophyll a 
concentration also suggest that duration of food availability 
rather than abundance of food might be the primary driver of 
secondary production, and influence age-0 polar cod growth 
and survival. Recruitment of age-0 polar cod provides the 
prey base for apex predators in subsequent years (e.g. John-
son et al. 1966; Crawford et al. 2015).

Temperature and salinity have been reported as important 
variables associated with polar cod abundances (De Rober-
tis et al. 2017; Logerwell et al. 2018; Forster et al. 2020). 
In this study, a linear, slightly positive association between 
temperature (range − 2 to 4 °C) and polar cod density was 
observed. This trend is consistent with previous studies that 
report a bell-shaped association between temperature and 
polar cod abundances with highest abundances at 4–6 °C 
(Vestfals et al. 2019; Forster et al. 2020), corresponding to 
optimal polar cod growth temperatures (Laurel et al. 2016). 
Positive linear associations between polar cod density and 
salinities up to 34 have also been observed in previous stud-
ies (De Robertis et al. 2017; Forster et al. 2020). Tempera-
ture and salinity define water masses with characteristic 
nutrient concentration and phytoplankton composition (Dan-
ielson et al. 2017), which have been shown to influence the 
distribution of polar cod and their prey (Eisner et al. 2013). 
Highest polar cod densities were observed in cSW, wSW, 
and in MWW, which are the prevalent water masses at the 
CEO during spring, summer, and autumn (Danielson et al. 
2020a). BCSW is often a nutrient-rich water mass (Daniel-
son et al. 2017) with a zooplankton community composed of 
lipid-rich calanoid copepods and euphausiids (Eisner et al. 
2013), which are prey for polar cod (Rand et al. 2013). Tem-
poral variations in water masses influence nutrient and prey 
composition of the water column through time, ultimately 

affecting temporal patterns of polar cod densities at the 
CEO.

Wind patterns determine sea ice drift and water mass 
movement that, in turn, affect distributions of polar cod and 
their prey. Wind-driven variations in water flow direction 
have been proposed as a mechanism to explain interannual 
changes in age-0 gadid backscatter in the Chukchi and west-
ern Beaufort Seas (Vestfals et al. 2019; Levine et al. 2021). 
Flow reversals associated with strong southward winds in 
the summer have been used to explain the retention of polar 
cod in the Chukchi Shelf in the summer of 2018, whereas 
autumn northward winds were responsible for the northward 
advection of age-0 polar cod towards the Chukchi and Beau-
fort Shelf breaks (Levine et al. 2021).

Summary and outlook

Four years of continuous biological and physical obser-
vations at the CEO provide evidence that sea ice is a key 
structuring factor of the Chukchi Sea ecosystem and polar 
cod dynamics in particular. This study supports previous 
observations that earlier sea ice retreat and increases in 
temperature associated with enhanced water transport from 
the NE Pacific could temporarily benefit polar cod produc-
tion in the NE Chukchi Sea. Earlier sea ice retreat results 
in greater and earlier peaks in polar cod densities and more 
stable populations (i.e. smaller fluctuations) by extending 
the growing season with favorable temperature and food 
conditions. Continuing changes in the physical environment 
could further alter the timing of biological processes that 
could lead to a mismatch of age-0 polar cod and their prey. 
Changes in water mass characteristics in the area could also 
alter the quality of polar cod prey by replacing lipid-rich 
species such as C. glacialis and Calanus hyperboreous by 
smaller, relatively lipid-poor species such as the sub-Arctic 
Calanus finmarchicus (Spear et al. 2020). Changes in zoo-
plankton species composition and availability would likely 
impact polar cod growth and survival in the NE Chukchi 
Sea (Bouchard and Fortier 2020). Increasing temperatures 
and earlier transport off the Chukchi shelf due to increased 
northward advection of warm Pacific waters could limit 
age-0 growth prior to their first winter and may increase 
competition and predation by increasing abundances of sub-
Arctic pelagic fish such as walleye pollock (Fossheim et al. 
2015; Huntington et al. 2020; Levine et al. 2021). Further 
increases in temperatures above optimal and further loss of 
sea ice could also be detrimental for egg development and 
age-0 polar cod growth (Huserbråten et al. 2019).

As high latitudes experience increased anthropogenic 
and climatological pressures from fossil fuel emissions, 
understanding temporal patterns and environmental drivers 
of key Arctic ecosystem components, like polar cod, can be 
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used to inform resource use and management decisions. This 
work describes temporal patterns and environmental drivers 
of polar cod at the CEO during a period of unprecedented 
warmth and sea ice loss and provides insight into the ocean-
ographic processes and environmental characteristics that 
affect polar cod feeding, growth, and survival. As similar 
time series become available from other parts of the Arctic, 
direct comparisons will be possible and will help elucidate 
how generic temporal patterns observed at the CEO are of 
patterns occurring elsewhere in the Arctic.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00300- 023- 03150-8.
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