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Abstract: Monitoring the status of Arctic marine ecosystems is aided by multi-sensor oceanographic 

moorings that autonomously collect data year-round. In the northeast Chukchi Sea, an ASL 

Environmental Sciences Acoustic Zooplankton Fish Profiler (AZFP) collected data from the upper 

30 m of the water column every 10–20 s from 2014 to 2020. We here describe the processing of the 

AZFP’s 455 kHz acoustic backscatter return signal for the purpose of developing methods to assist 

in characterizing local sea ice conditions. By applying a self-organizing map (SOM) machine 

learning algorithm to 15-min ensembles of these data, we are able to accurately differentiate 

between the presence of open water and sea ice, and thereby characterize statistical properties 

surface wave height envelopes and ice draft. The ability to algorithmically identify small-scale 

features within the information-dense acoustic dataset enables efficient and rich characterizations 

of environmental conditions, such as frequency of sparse ice floes in otherwise open water and brief 

open-water leads amidst the ice pack. Corrections for instrument tilt, speed of sound, and water 

level allow us to resolve the sea surface reflection interface to within approximately 0.06 ± 0.09 m. 

By automating the acoustic data processing and alleviating labor- and time-intensive analyses, we 

extract additional information from the AZFP backscatter data, which is otherwise used for 

assessing fish and zooplankton densities and behaviors. Beyond applications to new datasets, the 

approach opens possibilities for the efficient extraction of new information from existing upward-

looking sonar records that have been collected in recent decades. 

Keywords: acoustics; upward-looking sonar; sea ice; waves; Chukchi Sea; Chukchi  

Ecosystem Observatory; mooring; Acoustic Zooplankton Fish Profiler; self-organizing map 

 

1. Introduction 

1.1. Overview and Rationale 

The Arctic is undergoing rapid change [1], and continuous, year-round 

environmental measurements are needed to understand its seasonal and interannual 

variability and how these conditions support and structure the local ecosystem. Sea ice is 

a fundamental component of the Arctic marine system, influencing heat [2], freshwater 

[3], and radiative and turbulent heat fluxes between the atmosphere and the ocean [4] as 

it contributes to global climate regulation [5]. It provides an important habitat for species 

spanning all trophic levels [4,6], and residents of Arctic coastal communities depend on 

the sea ice for hunting and transportation to sustain their way of life [4]. As the Arctic 

continues to warm (e.g., [7]), monitoring sea ice conditions is needed to understand 

ongoing change and to better anticipate future marine conditions. In this paper, we 

describe an approach that improves our ability to characterize the sea ice environment 

using moored multi-purpose acoustic sensors. 

Oceanographic research in polar regions entails special operational challenges; 

research efforts are expensive and logistically difficult, requiring ships and equipment 
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capable of working in remote, ice-covered conditions. The presence of sea ice in winter 

months especially impedes ship-based sampling, often resulting in a lack of in situ data 

through large portions of each year. Bias of existing data toward ice-free seasons thus 

hinders a more complete mechanistic understanding of the system. Due to sea ice 

formation, oceanic current flow patterns, and water mass transformations, the Arctic 

shelves seasonally experience significant physical and biogeochemical variability [8–10]. 

Long-term, year-round monitoring is used to build a more complete picture of the Arctic 

environment, the functioning of its marine ecosystem, and how they may be impacted by 

a changing climate. 

1.2. Environmental Setting 

An Arctic marginal sea, the Chukchi connects the Bering Sea and the greater North 

Pacific Ocean to the Arctic Ocean (see Figure 1). The Chukchi is a broad, shallow inflow 

shelf [11], extending approximately 500 km in the zonal direction and 800 km in the 

meridional direction with an average depth of about 50 m [8,12]. The nutrient-rich Anadyr 

Current feeds northward into the Chukchi through Bering Strait [13,14], making the 

Northern Bering and Chukchi seas some of the most productive marine systems in the 

world, with carbon fixation rates of up to 250–300 g C m−2 yr−1 [6,13–16]. Sea ice is 

commonly present on the Chukchi Sea shelf from approximately November to July, 

reaching a level (undeformed) ice thickness of ~1.5 m before seasonal melt is triggered by 

incoming solar radiation and heat transported north through Bering Strait [2,9,16–18]. 

 

Figure 1. Map of the Chukchi Sea showing water depths. Bathymetric contours mark 100, 60, 50, 40, 

30, 20, and 10 m depths. The CEO mooring site is marked with a yellow star, and the figure insert 

shows a diagram of the 2017–2018 CEO mooring configuration and measurement parameters. To 

measure acoustic backscatter, the Acoustic Zooplankton Fish Profiler (AZFP) instrument is located 

at the top of Mooring 2. 

The oval-shaped Hanna Shoal (~162° W, 72° N; Figure 1) influences sea ice movement 

and thickness in the northeast (NE) Chukchi Sea. With a minimum depth of 

approximately 20 m, Hanna Shoal causes the grounding of deep ice keels, which in turn 

can lead to the regional persistence of sea ice into the summer [10,19]. The shoal’s shallow 

topography steers the shelf flow field as it crosses the shelf en route to the Arctic Ocean. 
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The southern flank of the shoal is believed to have weak current flow [10,20] and 

persistently cold bottom water (−0.7 °C annual mean); the slow currents allow settlement 

of suspended particulate matter, feeding a benthic biological “hotspot” that sustains a 

walrus foraging ground [21] and provides a valuable food source for fish, seabirds, and 

other marine mammals including gray whales and bearded seals [20,22]. 

To meet the observational challenges outlined above, the Chukchi Ecosystem 

Observatory (CEO; http://chukchiecosystemobservatory.org/; accessed on 12 November 

2020) was initially deployed in 2014 [23,24] as part of the North Pacific Research Board’s 

(NPRB’s) Long Term Monitoring program and in support of the build-out of the Alaska 

Ocean Observing System’s (AOOS’s) marine ecosystem implementation plan [25]. The 

CEO is a set of annually recovered and re-deployed subsurface moorings arrayed in the 

NE Chukchi Sea at 71.6° N and 161.5° W, located 110 km off of the Alaska coast between 

Hanna Shoal and Barrow Canyon (Figure 1). The CEO is generally comprised of two to 

three moorings per year carrying a suite of sensors: dataloggers for temperature, salinity, 

and ocean optics, passive and active acoustics, sediment traps [26], and biogeochemical 

sensors. An ASL Acoustic Zooplankton Fish Profiler (AZFP) on the CEO collects data from 

acoustic scattering sources including zooplankton, fishes, sea ice, frazil ice platelets, and 

the ocean surface. This versatility makes the AZFP well suited to the CEO’s 

multidisciplinary mission. Although acoustic studies of sea ice draft are typically 

undertaken with upward-looking sonar (ULS) instruments dedicated to the task of ice 

detection (e.g., [27,28]), the AZFP is itself a ULS, although the AZFP ping rate (~20 s) is 

considerably slower than that of typical ULS instruments (~1 s ping rate). Despite the 

sample rate limitation, this study demonstrates that the AZFP can be used to investigate 

properties of the ocean surface and sea ice above the mooring and how these change on 

time scales of minutes to years. 

1.3. Acoustic Detection of Sea Ice from Below 

ULS instruments on oceanographic moorings collect temporally and vertically high-

resolution data that can be used to describe the topography of the sea ice from below, and 

of the ocean–atmosphere interface when sea ice is not present. Deployed to remain below 

the reach of sea ice keels, a ULS can autonomously collect data all year long, regardless of 

weather and ice conditions. However, high-resolution acoustic data can be time-

consuming and labor-intensive to process and analyze [27–29]. 

Determining ice draft involves the conversion of the travel time of a sonar acoustic 

pulse into an estimate of vertical distance between the ULS transducer and the underside 

of the sea ice. Using a moored pressure sensor, the local sea surface elevation is used as a 

reference for the calculation of sea ice draft, enabling corrections for fluctuations in speed 

of sound, and compensating for the lack of in situ information about water column 

structure above the instrument [30,31]. The reference sea level can be difficult to ascertain 

during periods of the year when it is obscured by ice cover for weeks or months at a time 

[27,28,31,32]. Determination of a reference sea level often requires manual analyses to 

identify open-water leads or polynyas that are then used to refine estimates of sound 

speed and sea ice draft. 

The conditions of sea ice growth and decay affect the acoustic properties of ice [32–34]. 

As ice forms, ages, and ablates, it is subjected to processes that alter its physical 

characteristics including porosity, permeability, and roughness, which each have direct 

effects on acoustic scattering and attenuation [33]. Sea ice is especially sensitive to changes 

in temperature due to the inclusion of salts in the structure [33,34]. As the ice grows, brine 

pockets become increasingly constricted and isolated, reducing porosity and 

permeability. When sea ice begins to ablate in spring, brine channels grow and form 

tunneled connections with nearby pockets that eventually allow the brine to drain back 

into the ocean, influencing both the salinity of the water beneath the ice (which alters the 

speed of sound through the water column) and the ice’s porosity [34]. When sensible heat 

is exchanged from the ocean to the ice, the under-ice surface is smoothed through the 
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erosion of angular structures [33]. Such characteristics produce measurable differences in 

acoustic backscatter, and this information can be leveraged to distinguish open-water 

from ice-covered conditions, and to characterize the sea ice environment as it changes 

throughout the year. Melling [32] demonstrated a difference in acoustic echo amplitudes 

between young and thin level ice, thick level ice, and ridge keels, showing that different 

sea ice types could be distinguished within ULS acoustic data. 

Automating the detection of open-water segments in sea ice data has been attempted 

in numerous studies, with varying degrees of effectiveness. Algorithms automating the 

identification and tracking of leads have been developed using airborne [35] and satellite 

[36] imagery. Kvambekk and Vinje [30] outlined a method that analyzed ULS data in pe-

riods of 12–24 h in which the calculated draft statistics were subjected to certain thresholds 

and assumed to be open water if a number of predefined criteria were met. Strass [29] 

built upon this work and attempted an automated procedure that used short-term draft 

variability and echo amplitude variables to determine open water periods, but ultimately 

abandoned it for a more subjective system when it proved to be less effective during long 

intervals of little to no open water. Behrendt et al. [37] employed a system of identifying 

open water periods using the differences in the acoustic echo between water and ice and 

subjecting the results to an adjustable minimum threshold. Krishfield et al. [31] utilized a 

semiautomated approach by which sound speed was adjusted in three-hour segments us-

ing minimum draft thresholds when leads were present, and interpolating sound speed 

values through long periods of ice cover. Notably, a component of most of these methods 

is the need to manually define often subjective threshold values when determining open 

water from ice cover. 

Modern computing power and analytical tools opens the door for efficient handling 

of increasingly large datasets. Our approach to the problem of differentiating sea ice from 

open water relies on the statistical power provided by aggregated ensembles of ice reflec-

tion statistics and the computational power provided by machine learning algorithms. 

This approach enables the detection of key patterns within large volume acoustic datasets 

without requiring predefined thresholds. It therefore represents a new level of automation 

in distinguishing open water from sea ice. 

With the goal of developing a methodology that can more fully automate the pro-

cessing of ULS data to facilitate subsequent environmental analyses, herein we analyze 

six years of subsurface mooring-based acoustic data collected from summer 2014 to fall 

2020 in the NE Chukchi Sea. First, we outline a procedure to use the acoustic returns of an 

AZFP to calculate initial estimates of sea ice draft and wave height at the CEO site. Second, 

we separate periods of open water using a machine learning algorithm called the self-

organizing map (SOM), and use these results to further refine the initial sea ice draft esti-

mates. The resulting data can be applied to characterization of the local sea ice environ-

ment at the mooring site to gain a better understanding of seasonality, interannual varia-

bility, and acoustic nature of the ice over the mooring. We expect to detect interannual 

changes in the dates of ice onset and decay, in the density of sparse ice in summer and in 

the frequency of open water leads in winter. These characteristics represent potentially 

ecologically important changes to the physical habitat that supports the walrus, arctic cod, 

and other species that are endemic to the NE Chukchi Sea. 

Section 2 details the processing and handling of the AZFP dataset, ancillary datasets 

from additional sensors co-located on the mooring cluster, and analysis techniques. Section 3 

classifies ice-covered and open-water periods using the SOM algorithm and investigates 

the contrasting acoustic character of these two conditions. Sections 4 and 5 provide dis-

cussion and conclusions, respectively. 
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2. Materials and Methods 

2.1. Data 

The AZFP on the CEO is built by ASL Environmental Sciences of Sidney, BC, Canada, 

and is configured with four frequencies: 38, 125, 200, and 455 kHz. It sends acoustic pulses 

upward through the water column and records reflected echo amplitudes, which are sub-

sequently scaled and adjusted for beam spreading to provide scattering volume (��) in 

decibels relative to the transmitted signal. Our analyses are based on measurements of the 

455 kHz transducer and a nominal speed of sound of 1450.5 m s−1. The 455 kHz (7° beam 

width, which gives an open-water level surface footprint of approximately 12.8 m2 over a 

distance of 33 m) return signal is digitized at a rate of 64 kHz and time-gated into discrete 

bins, giving a maximum achievable resolution of about 1.1 cm. The AZFP was deployed 

at depths of 28 m in 2014 and 33 m in all other years and programmed to ping at a rate of 

three to six times per minute (Table 1). In the second deployment year (2015–2016), six 

pings were averaged into 60-s ensembles onboard the instrument, while in the other de-

ployments individual pings were recorded every 15 or 20 s. 

Table 1. Details for each annual AZFP deployment, including the start time, target depth for the top 

of the CEO mooring frame, bin size, ping rate, and samples recorded. The CTD offset is an estimate 

of the distance between the pressure sensor and the AZFP transducer on the mooring. 

Deployment Years 
Start Date and Time 

(GMT) 

Target Depth 

(m) 
Bin Size (m) 

Ping  

Interval (s) 

Samples  

per Ping 

CTD  

Offset (m) 

2014–2015 
20 September 2014 

22:48:00 
28 0.0113 15 3384 0.38 

2015–2016 
20 August 2015 

16:53:00 
33 0.0340 10 1176 0.84 

2016–2017 4 August 2016 4:33:00 33 0.0113 20 3528 0.84 

2017–2018 
15 August 2017 

1:03:00 
33 0.0113 20 3528 0.84 

2018–2019 6 August 2018 5:00:00 33 0.0340 15 1176 0.98 

2019–2020 
19 August 2019 

16:03:00 
33 0.0113 20 3529 0.84 

To eliminate measurements taken during mooring placement and retrieval opera-

tions, one hour of AZFP data was removed from each end of all deployments. Echo re-

turns from within 3 m of the transducer were also excluded from the dataset to eliminate 

nearfield acoustic ringing [38]. 

Measurements of temperature, salinity, and pressure were obtained from a Sea-Bird 

Scientific (Bellevue, WA, USA) SBE-16 SeaCat conductivity-temperature-depth (CTD) 

datalogger installed on the mooring adjacent to the AZFP (Figure 2). The CTD was cali-

brated at the manufacturer’s factory prior to deployment in each year. Recovered data 

were screened for drift, spikes, and other possible error sources. 
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Figure 2. Diagram of the terms used to calculate Δ� from AZFP data. Note that the long-period 

surface waves (e.g., tide waves, shelf waves) depicted in the figure do not include short-period sur-

face capillary waves, wind waves, or swell. 

The CEO installation also includes a Teledyne RDI Waves Sentinel acoustic Doppler 

current profiler (ADCP) that is equipped with the functionality to measure significant 

wave height and direction. The ADCP recorded waves with a burst of pings every 1–4 h, 

depending on the deployment year. We use the ADCP-derived surface wave data, pro-

cessed using the manufacturer’s software, to assess the AZFP instrument’s ability to gen-

erate estimates of surface wave height. 

Atmospheric sea level pressure records were obtained from the European Centre for 

Medium-Range Weather Forecasts (ECMWF)’s ERA5 reanalysis 

(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5; accessed 31 March 

2021). The CTD and ERA5 datasets each have a time resolution of one measurement per 

hour. To associate environmental conditions with each ping, these datasets were linearly 

interpolated to the AZFP observation times. 

True-color satellite imagery provided by NASA Worldview is used to compare 

cloud-free true-color remotely sensed sea ice conditions on mostly cloud-free days to the 

measurements made by the AZFP and the classifications made by the ice/open water de-

lineation algorithm (https://worldview.earthdata.nasa.gov; accessed 4 February 2022). 

2.2. Locating the Acoustic Reflection 

For the general case of either ice-covered or open-water conditions, we form individ-

ual-ping estimates of the distance between the ocean surface, η, and the ocean–ice or 

ocean–atmosphere interface as: 

�� =  � − ��. (1)

Here, η is a reference sea level derived from the pressure measured by the moored 

CTD and reanalysis atmospheric sea level pressure, while �� is the vertical (tilt-corrected) 

distance between the ice (or ocean–atmosphere interface) and the AZFP transducer. Tides 
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storm surge waves, atmospheric pressure variations, and other low-frequency surface 

fluctuations that are resolved by the hourly CTD data are captured in both r (by the AZFP) 

and η (through the co-located CTD pressure sensor and the ERA5 estimates of the local 

atmospheric sea level pressure) terms. Such long-period waves are therefore removed 

from the �� estimate by Equation (1). Hence, �� estimates are calculated relative to a 

virtual (or nominal) reference plane that is best described as the undisturbed sea level, 

which is the sea level for which low-frequency surface fluctuations have been removed 

(i.e., fluctuations that are resolved by the CTD and ERA5 measurements. Wind waves, 

swell, and other short-period waves that are not resolved by the CTD pressure sensor 

represent a source of noise to any individual ping’s ice draft estimate. Such short-period 

waves are high-frequency deviations from the undisturbed sea level. We note that many 

ULS instruments are equipped with a pressure sensor that is sampled at the time of each 

acoustic ping and for such datasets even many short-period waves can be removed from 

the �� estimate. Our AZFP is not outfitted with a pressure sensor and thus we are forced 

to rely on the co-located but less frequently sampled CTD pressure record. We show be-

low that when averaged over a 15-min ensemble, short period wave noise represents an 

acceptable magnitude of error in the final ice draft estimates. 

To calculate ��, we apply the formula: 

�� =  � · � · ���(�) (2)

where r is the time-gated range between the AZFP transducer and the target of interest 

(either the sea surface or the bottom of the ice), φ is a correction for instrument tilt, and β 

is a correction for the speed of sound (Figure 2; [27]). 

An initial estimate of instantaneous distance, r, from the AZFP transducer to the 

ice/ocean or ocean/atmosphere interface is obtained through analysis of individual ping 

echo amplitude profiles and amplitude gradient profiles. Acoustic returns during ice-free 

days and ice-covered days exhibit prominent peaks in the backscatter amplitude, which 

we take to represent the location of the acoustically reflecting surface (Figure 3). Compar-

ison of the time-gated bin of maximum �� amplitude to the bin of maximum �� gradient 

magnitude shows the two to be identical 99.993% of the time across the six-year dataset, 

suggesting that the two methods are equally useful for identifying the reflection surface 

location. For the purpose of this study, we define the raw (uncorrected) distance from the 

AZFP transducer to the target as the bin of the maximum amplitude return signal. 

The AZFP is subject to movement from forces acted upon the mooring by ambient 

currents. This movement causes slight instrument tilt, which affects the orientation of the 

transducer and the distance between the transducer and the ice directly above. To correct 

for transducer tilt, the AZFP records pitch, γ, and roll, α, in degrees. We apply a correction 

for instrument tilt, φ, according to the trigonometric relation: 

� = ����������(�) + ����(�) (3)
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Figure 3. Representative acoustic return ping profiles from the AZFP dataset in open water (left) 

and ice cover (right). Each plot shows the acoustic backscatter amplitude scattering volume �� of a 

single ping plotted over uncorrected distance from the AZFP transducer (blue), and the �� gradient 

(red). The gray dashed line represents the 3-m nearfield echo exclusion zone. 

The variable β in Equation (2) represents a correction factor for the sound speed var-

iations in the water column. Seasonal variations in temperature and salinity exert non-

negligible effects on density and thus the apparent distance from the AZFP transducer to 

the surface [27,28]. The correction is computed as a ratio between the true sound speed 

and our nominal sound speed of 1450.5 m s−1. We applied an initial correction for the val-

ues of temperature, salinity, and pressure measured by the CTD at the AZFP depth, 

though some uncertainty remains due to a lack of information on the overlying water 

column; frequent CTD casts at the CEO site are logistically impractical. We can assess the 

potential error induced by incomplete knowledge of the hydrographic structure by com-

paring speed of sound variations associated with maximum expected temperature and 

salinity variations. Given the efficiency of ice keels to induce mixing [39] and convective 

overturn associated with brine rejection as salts from forming sea ice are released into the 

ocean, [3], we assume a weakly stratified water column during late fall, winter, and early 

spring at this shallow shelf setting. At these times of year, we anticipate that 0–30 m depth 

temperature and salinity differences are typically less than 0.2 in °C and PSU (see, for 

example, Figure 4 of Hauri et al. [24]). Speed of sound uncertainty at a typical winter tem-

perature of −1.8 °C and salinity of 32 PSU are less than 0.1% (sound velocity = 1437.1 m s−1 

for T = −1.8 °C and S = 32 PSU; sound velocity = 1438.3 m s−1 for T = −1.6 °C and S = 32.2 

PSU). With a two-way travel distance of 66 m for thin ice, such uncertainty would induce 

a �� error of about 0.027 m; for a 10 m ice keel the uncertainty would be about 0.018 m. 

Since �� decreases as �� increases, the resulting uncertainty in ice draft is greater for thin 

ice than for thick ice. 
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Figure 4. �� (m, top panels) and �� (dB, bottom panels) plotted for representative open-water (left) 

and ice-covered (right) 24-h intervals, respectively. 23 September (panels (a,b)), represents open-

water conditions at the CEO site in the NE Chukchi Sea, and 3 December (panels (c,d)), represents 

ice-covered conditions. Highlighted features within the sea ice cover include: leads (circled in black), 

level ice (circled in green), and ice keels (circled in orange). 

Deviations from the true speed of sound can be at least partially mitigated by incor-

porating our knowledge of β from the ice-free intervals. Common practice [27] is to use 

open-water events (e.g., leads and polynyas) that pass over the mooring to compute range 

corrections. To estimate β for the periods when ice is over the mooring, we compute the 

daily mean β for ice-free intervals of each day that contains more than 15 minutes’ worth 

of open-water pings, and then linearly interpolate β in time between successive open-wa-

ter tie points [27,28,37]. Changes in β over the course of one day are generally expected to 

be small. When ice is present, however, the undisturbed sea level may be obscured for 

weeks or even months at a time, during which uncertainty in sound speed corrections 

grows [28]—although this often occurs at a time of year when water temperature and sa-

linity variations are relatively small. Calculation of β can be a labor-intensive process 

when identifying and selecting open-water events by hand [27,28]. 

The local reference surface elevation, η, is derived from the hydrostatic equation: 

� =
(���� − ����)

� · �
+ �� (4)

where ρ is density calculated from the co-located CTD measurements of temperature, sa-

linity, and pressure (Tctd, Sctd, Pctd), respectively; Patm is atmospheric pressure from ERA5; g 

is gravitational acceleration (9.8 m s−2), and �� is an alignment correction for zeroing the 

reference level, based on the open-water time intervals. Pctd includes a correction for the 

location offset between the transducer and the CTD pressure sensor (Table 1). Recognizing 

that the calibrated CTD pressure measurement includes hydrostatic pressure of the water 

column referenced to zero at the bottom of the atmosphere, the appropriate atmospheric 

pressure correction Patm is the deviation of atmospheric pressure from the local mean 

����  =  ����� −  ����(�����). (5)
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The local mean atmospheric pressure at the CEO site is approximately 1015 mbar 

(depending on year), so the calibrated CTD pressure reference of 14.7 psia (1013.53 mbar) 

represents an average offset of ~1.5 cm in height. This offset is accounted for in the final 

elevation correction. Harmonic analysis of the CTD pressure sensor (following Pawlowicz 

et al. [40]) shows that the magnitude of the resolved (signal-to-noise ratio > 2) tidal con-

stituents sum to 16.8 cm, representing 14.7% of the total sea level variability at the CEO 

site. 

An additional final adjustment, ��, was applied to the entire dataset to bring it into 

alignment with the empirically identified reference mean sea level. This nearly negligible 

offset was determined by computing the mean �� of all open-water pings across the 6-

year dataset and applying this offset to the entire time series. For this dataset, �� = 0.002 

m. 

Certain unquantifiable errors in �� estimates and β exist in the form of: inaccuracies 

in �� due to interactions of the sonar beam with target features in an off-axis position, 

uncertainties of the temperature and salinity profiles for the water column above the 

mooring, and potential errors introduced in the speed of sound correction due to lack of 

mid-winter open-water calibration tie points. Estimates of �� are made with the assump-

tion that the ULS target is on the axis of the sonar beam, when in practice the acoustic 

pulse areal footprint encounters ice features or waves in an off-axis position, causing a 

biased estimate of draft for that ping [28]. 

Additional errors may also be introduced by our method in using open-water peri-

ods to refine the speed of sound correction. When waves break, air bubbles are injected 

into the water column, sometimes to a depth of several meters or more. Since bubbles 

strongly scatter sound, studies found identification of the sea surface interface in heavily 

agitated water to be inaccurate and therefore unsuitable for use in speed of sound correc-

tions [28,32]. Since our automated method utilizes all available open-water data, inaccu-

racies in the β calculation are expected to be largest during periods of storms and high 

winds. However, because we make daily estimates of β that are based on over 4000 pings 

per day, occasional pings that are biased due to bubbles have inconsequential impact on 

our β estimates. During periods of ice cover, there are fewer pings per day available for β 

estimations, but the presence of ice dampens surface waves and so we do not generally 

expect bubble injection from large breaking waves to coincide with the presence of ice 

cover. 

To improve our accuracy in separating the presence of open water from sea ice, the 

full-resolution AZFP datasets are assembled into 15-min ensembles, and a suite of statis-

tical metrics computed on each of the of �� and �� parameters. In addition to the ensem-

ble arithmetic mean, we also evaluate each interval’s standard deviation, minimum, max-

imum, range, skewness, and kurtosis. 

2.3. Self-Organizing Map 

As previously noted, deriving sea ice draft from acoustic data can be a labor-intensive 

process, in part because of the need to identify sometimes sparse open-water intervals that 

provide a sea level reference [27,28]. To aid in distinguishing open water from ice cover, 

we turn to a self-organizing map (SOM) algorithm, a tool designed to extract characteristic 

patterns from large-volume and potentially noisy data (e.g., [41–43]). The SOM’s utility 

makes it suitable for applications in a wide range of disciplines, including meteorology, 

biological and physical oceanography, agriculture, and economics [43,44]. A useful fea-

ture of the SOM framework is that it does not require any prior knowledge of the input 

datastream, meaning that it can function without the use of predefined or subjectively 

determined selection thresholds [42]. 

The SOM is based on an unsupervised neural network [43,45], and its resulting out-

put allows for the simple visualization of otherwise complex or high-dimensional data. 

Through a recursive regression process, the SOM converts nonlinear statistical 
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relationships between data into a low-dimensional gridded “map” from which relational 

patterns may be identified. 

A MATLAB-based SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox/; ac-

cessed on 15 September 2021) drives the machine-learning signal analysis component of 

our study. The toolbox implements the SOM algorithm by accepting a data array contain-

ing an arbitrary set of input variables and subjecting it to one of three training algorithms 

(sequential, batch, or sompak) to identify a user-specified number of patterns. To start the 

sequential training process, each unit on the map is assigned a random weight. Input data 

from the high-dimensional space are passed into the SOM algorithm, which calculates the 

activation function (usually the Euclidian distance between the weight vector of the unit 

and the data). The weight vector of the unit with the highest activation (i.e., the smallest 

Euclidian distance) is termed the best matching unit (BMU), and the weight vector of the 

BMU is adjusted toward the input data. Additionally, a neighborhood function is applied 

to modify the weight vectors of adjoining units. This machine learning training phase then 

repeats until the map evolves into a steady solution. The result is a map in which similar 

data points are grouped more densely on the grid than unlike data points [41,43]. 

The batch and sompak training algorithms are similar, wherein all input vectors are 

simultaneously used to update all weight vectors. This method results in a training se-

quence that is faster and more computationally efficient than the sequential training pro-

cess [43]. We process our data in this study using the batch training algorithm, and con-

figure the training phase to run for ten iterations. 

The SOM Toolbox has four available types of neighborhood functions: “gaussian,” 

“cutgauss,” “ep” (Epanechikov function), and “bubble.” We tested all four and found no 

meaningful difference between results of three in accurately identifying open-water seg-

ments. The fourth, the bubble function, designated all ensembles as open water and there-

fore is not a valid choice for this application. For this study, we utilize the ep function. For 

more information about the SOM Toolbox, including the equations used in the activation 

and neighborhood functions and a performance evaluation, see Liu et al. ([43]). 

Assuming a priori (justifications provided in Section 3 and by the studies referenced 

in Section 1.1) that ice-ocean and ocean–atmosphere interfaces exhibit contrasting acoustic 

characteristics, we configure the SOM algorithm to search for two patterns in the 15-min 

AZFP statistics listed in Section 2.2. The BMUs thus provide a separation of the data at 15-

min intervals that are associated with primarily either open water or sea ice present above 

the CEO mooring. As the SOM can be sensitive to signal variance, we normalized each 

variable by subtracting its mean and dividing this by the record length standard devia-

tion. We subject the SOM results to sensitivity testing to identify the optimal input param-

eters, averaging period, and input variables to use for the identification of open water and 

ice cover. 

Application of the SOM algorithm is presented in Section 3.3. 

2.4. Automating the Construction of �� 

Combining the signal handling and analysis techniques described above, we can con-

struct an automated procedure applicable to generic ULS datasets. Such an algorithm (Figure 

5) is based on Equation (1) to calculate �� and the SOM neural network. With notable 

fidelity, the SOM identifies open-water intervals within otherwise extensive sea ice cover, 

and sparse ice in periods of primarily open water. 
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Figure 5. Signal processing flow chart detailing steps for automating estimates of sea ice draft, wave 

amplitude, and associated statistics from the upward-looking sonar Acoustic Zooplankton Fish Pro-

filer (AZFP) acoustic backscatter data and accompanying conductivity-temperature-depth (CTD) 

and atmospheric sea level pressure (SLP) datasets. ��  represents the amplitude of the acoustic 

backscatter relative to the transmitted signal, r is the raw (unadjusted) distance from the acoustic 

transducer to the ice/ocean or ocean/atmosphere interface, β represents a correction for changes in 

the speed of sound due to water density fluctuations, and �� is the calculated difference between 

the mean sea level and the sea surface/bottom of the ice. A self-organizing map (SOM) machine 

learning algorithm identifies intervals of open water and sea ice cover. 

From the individual AZFP pings we first extract the bin containing the maximum 

echo return amplitude (��), and use this to estimate the distance from the AZFP transducer 

to the ocean–atmosphere or ocean–ice interface. AZFP pitch and roll measurements cor-

rect the acoustic range estimate for instrument tilt, and CTD and atmospheric sea level 

pressure data enable initial sound speed and surface wave corrections, providing a sur-

face reference for initial ice draft estimates (��). Lacking data about stratification of the 

water column above the mooring, we use open-water periods to compute the β correction 

and take these elements into account. 

To identify open-water periods in the midst of sea ice over the CEO site, we begin by 

combining the AZFP �� and �� datasets into 15-min ensembles and computing statisti-

cal summaries for each ensemble. These metrics provide the input variables for the SOM 

algorithm, which assigns variables to one of two modes, representing open water and ice 

cover. We use the ensembles that are identified as Mode 1 (open water) as year-round 



J. Mar. Sci. Eng. 2022, 10, 1577 13 of 31 
 

 

surface calibration tie points, interpolating β values between the tie points and onto the 

ensembles identified as Mode 2 (sea ice). The open-water calibration tie points are identi-

fied using the SOM algorithm Thereafter, we are able to re-compute final �� estimates 

that represent ice draft. 

To assess the benefit of the β correction, we compute the mean and standard devia-

tion of the 15-min ensemble �� estimates from prior to the final β correction, obtaining a 

level sea surface estimate having a �� root-mean-square error of 0.30 m and a standard 

deviation of 0.20 m, calculated across all open-water ensembles. After the final β correc-

tion, those values decrease to ~0.06 m and 0.09 m, respectively, demonstrating the effec-

tiveness of using the SOM-identified open-water ensembles to refine the β correction. 

From the final estimates of �� and the SOM Mode 1/Mode 2 separations, we can compile 

metrics and statistics for sea ice draft and wave amplitudes, depending on research needs. 

3. Results 

3.1. Acoustic Reflection Characteristics 

To demonstrate acoustic differences between open water and ice cover, we select one 

24-h interval in the pre-freeze-up (open water) season of 2014 (23 September) and one 24-

h interval post-freeze-up (3 December). According to passive microwave satellite meas-

urements from the National Snow and Ice Data Center [46,47], 23 September is reported 

as having a 0% ice concentration over the CEO site, with at least two more ice-free days 

before and after that date. December 3rd likewise was reported to have 100% sea ice con-

centration, within a cluster of other 100% ice-covered days. Inspection of the AZFP dataset 

reveals that the acoustic properties of 23 September and 3 December are well representa-

tive of typical open-water and ice-covered days, respectively. 

The �� and �� estimates for all pings within each of the selected 24-h periods show 

measurable differences between open-water and ice-covered conditions (Figure 4). While 

the ice-cover signal shows a greater range in �� excursions due to ice keels, the open-

water signal contains the effects of larger-amplitude surface waves and swell during ice-

free conditions. The �� values of the open-water day are generally symmetrical around 

zero (i.e., the undisturbed sea level), while the ice-cover values are skewed downward 

into the water column due to the presence of sea ice and ice keels. The measurements of 

��  also exhibit a difference between the two days, with backscatter amplitude much 

greater for the open-water conditions than for sea ice cover. Figure 4d also shows three 

periods of time (just after 03:00, 18:00, and 21:00 GMT) where �� is close to 0 m and which 

appear to be leads within the ice cover (i.e., brief periods of open water or very thin ice). 

These leads are associated with �� measurements that are close to 0 dB, and similar in 

magnitude to the open-water day reflection amplitudes. Together, these observations 

show that the ocean–ice interface has a measurably different acoustic character than the 

ocean–atmosphere interface, a finding that is consistent with prior investigations (e.g., 

[32,33,48]). 

We expect that variations in sea ice roughness, porosity, and permeability all have 

effects on how acoustic waves are scattered, reflected, or attenuated, and that are exhib-

ited in the measured �� returns from the AZFP. Color-shading �� as a function of �� for 

the entire six-year AZFP dataset (Figure 6) shows a transition between periods of open 

water and periods of ice cover. During the months between summer break-up and winter 

freeze-up, the acoustic backscatter amplitude recorded by the AZFP is greater than the 

backscatter amplitude recorded during the winter ice-covered months. However, one can 

also detect instances of high-amplitude “summer” type reflections in the presence of thick 

ice keels in spring. 
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Figure 6. �� (m) time series for the full-resolution six-year AZFP dataset at the CEO site in the NE 

Chukchi Sea, color-shaded by �� (dB). 

The visualization of echo amplitude (Figure 6) reveals details about the character of 

the seasonal cycles at the CEO site. For example, the open-water seasons in 2017 and 2019 

appear to be longer (by a month or more) than that of the other deployment years. Tem-

perature records (not shown) from the CTD onboard the CEO moorings at approximately 

the same depth as the AZFP show that the water temperatures for 2017 and 2019 were 

higher than any other year in the AZFP record, with temperature maximums reaching just 

over 4 °C in October and November, respectively. In contrast, the highest temperature 

recorded in the autumn of 2018 was approximately 1.6 °C. Such differences in water tem-

perature may be influenced by variability in heat transported north through Bering Strait 

and air–sea heat exchanges local to the Chukchi Sea [2,7]. 

3.2. Statistics of the Return Echoes 

While ��  and ��  provide contrasting information in the presence of sea ice and 

open water, examination of the data reveals that these metrics alone are not fully sufficient 

for differentiating the two conditions. Wind acting upon open water causes the ocean–

atmosphere interface to vary in range, often by several meters during summer storms 

(Figure 6). The initial formation of sea ice can be difficult to identify when ice is not thick 

enough to be distinguished from the background noise of wind waves. Thus, we turn to 

the 15-min statistics (Section 2.2) to provide additional metrics that can be more robustly 

delineate ice cover from open water. 

All of the selected statistics for both �� and �� (Figure 7 shows the 2014–2015 de-

ployment as an example) exhibit transitions from open water to ice cover (in 2014, late 

October) and a return to open-water conditions (in 2015, late June, with brief periods of 

ice cover during the latter half of July and early August). Periods of open water generally 

exhibit �� and �� values closer to zero than periods of ice cover. Skewness and kurtosis 

of �� values are closer to zero during winter months. In the �� minimum statistic, the 

seasonal transition is marked by a shift from negative values to positive values. The tran-

sition from open water to sea ice in late October is visible in nearly all plots of Figure 7; 

however, notable in the plots of �� for this deployment (Figure 7b) is an extended transi-

tion to open water that begins in mid-May, where the acoustic character of the signal 

changes long before break-up becomes apparent in measurements of �� (Figure 7a). Each 

of the metrics exhibits an identifiable difference between the ice-covered periods and the 

open-water periods, indicating that they are all potentially useful in classifying ice condi-

tions over the mooring. 
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Figure 7. Time series of statistics for �� and �� for the 2014–2015 AZFP deployment in the NE 

Chukchi Sea, computed on the 15-min ensembles. From top panel to bottom panel, parameters 

shown are: mean, standard deviation, range, skewness, kurtosis, minimum, and maximum for both 

�� (a) and �� (b). With many instances of leads and otherwise shifting ice conditions, the mooring 

was mostly covered by sea ice from approximately 1 November 2015 to 30 June 2016 and 13 July 

2016 to 3 August 2016. 

In Figure 8, kurtosis is plotted against skewness of both �� and �� for the open-

water and ice-covered example days shown in Figure 3. In general, the kurtosis and 



J. Mar. Sci. Eng. 2022, 10, 1577 17 of 31 
 

 

skewness of the open-water conditions are lower than that of the ice-covered conditions 

for ��, with a lower variance for the open-water values. Likewise, the skewness of the �� 

for the open-water day is also lower than that of the ice-covered day, but the open-water 

day has a higher kurtosis and variance. Panels in Figure 8a,b show an apparent delinea-

tion between the open-water day and the ice-covered day. The delineation becomes more 

distinct when the pings of the open-water and ice-covered days are averaged into hourly 

ensembles (panels in Figure 8c,d). The 15-min ensembles exhibit some overlap, indicating 

that skewness and kurtosis cannot be relied on solely to determine if a 15-min period is 

most likely to be open water or ice-covered, but nevertheless the relationship between the 

two variables highlights their usefulness for this application. 

 

Figure 8. Kurtosis plotted against skewness for representative Acoustic Zooplankton Fish Profiler 

(AZFP) data over 24 h of open water (red; 23 September 2014) and ice-covered (blue; 3 December 

2014) conditions. Statistics are computed over 15-min (upper panels (a,b)) and hourly (lower panels 

(c,d)) ensembles at the CEO site in the NE Chukchi Sea. Kurtosis and skewness are calculated for 

both �� (left panels (a,c)) and �� (right panels (b,d)). 

3.3. Delineating Sea Ice and Open Water with SOM Analysis 
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As noted above, ��, ��, and the statistical metrics such as skewness and kurtosis are 

each individually insufficient for delineating periods of open water and sea ice, so we 

provide our time-averaged data and statistic al metrics to the SOM algorithm. We config-

ured the SOM to search for two patterns in the AZFP data, which we will demonstrate are 

representative of open water (Mode 1) and ice cover (Mode 2). Results of the SOM analysis 

based on all 14 input variables (listed in Section 2.2) suggest that the algorithm exhibits 

appreciable skill in delineating the presence of sea ice and open water (Figures 9–13). 

 

Figure 9. Plot of �� with the SOM analysis. The full-resolution time series of �� from the AZFP in 

the NE Chukchi Sea is plotted in gray, with each 15-min period �� mean marked as Mode 1 (open 

water; red) or Mode 2 (ice cover; blue) according to the SOM. Note the existence of many open water 

ensembles in the presence of ice cover, representing sound speed correction tie points. 

We test four AZFP averaging intervals for statistical and SOM analyses: 10, 15, 30, 

and 60 min. All periods produce similar estimates of ice cover: for the 2014–2015 deploy-

ment, the 10-min period SOM identifies 72.3% of ensembles as Mode 2, a 15-min period 

71.3%, a 30-min period 73.3%, and a 60-min period 72.8%. While the small number of en-

sembles that differ depending on the ensemble selected appear throughout the record, the 

majority of them are concentrated in the transition periods from open water to ice cover 

and back again. Smaller ensemble intervals tend to be associated with disagreements later 

after freeze-up and earlier before break-up (a difference of several days in the 2014–2015 

deployment). Such differences could potentially impact estimates of freeze-up and break-

up dates). 

The SOM Toolbox also supplies a metric of map quality denoted the quantization 

error (QE), defined as the mean distance between each data point and the BMU [43]. In 

general, a lower QE indicates a map that better matches the data. The QE is the lowest for 

the 60-min period (2.52) and increases incrementally as the time periods shorten (the 30-

min period’s QE is 2.54, the 15-min period’s is 2.56, and the 10-min period’s is 2.58). How-

ever, the 30- and 60-min periods do not delineate clear but short duration instances of ice 

cover and open water that are captured in the 10- and 15-min ensembles. We therefore use 

the 15-min period in this study in order to balance temporal precision and SOM QE, max-

imizing the number of pings in each ensemble for improved statistics (e.g., 50% increase 

in the number of pings per ensemble from 10-min to 15-min ensembles and a correspond-

ing decrease in 95% confidence limits). 

We also test whether the SOM results are sensitive to any individual variable by run-

ning the SOM algorithm through a series of 14 iterations, removing one variable each time. 

We find that in comparing the result to the SOM run with all variables included, no single 

variable accounts for more than a 1.3% difference in mode identification by its removal, 

suggesting that none of the variables has a disproportionately large influence on the out-

come of the SOM by itself. Conversely, in running the SOM algorithm on each variable 

individually, we find a minimum of 23% difference in mode identification, reinforcing the 



J. Mar. Sci. Eng. 2022, 10, 1577 19 of 31 
 

 

idea that the best approach for using the SOM to detect open water involves a combination 

of variables. 

In order to test the relative magnitude of importance each variable has on the SOM, 

and thus whether certain variables are more useful in this context than others, we also run 

an iterative stepwise test by which the “best” single variable (i.e., the variable that pro-

duces a map with the fewest differences from the map resulting from the use of all 14 

variables) is selected. We then run this dataset through the SOM algorithm in combination 

with each of the remaining variables. The best combination from that iteration is then se-

lected and run in turn with each remaining variable, etc. until no variables remain. This 

test shows that three variables (mean ��, range of ��, and minimum of ��) produce a 

BMU map that is in 98.6% agreement with the map that includes all 14 variables. While 

this result suggests that a subset of all variables may be used to produce a map of mean-

ingful accuracy, depending on the application, some caution must be taken in deciding 

which variables to exclude. For example, while the SOM for the 15-min period averaging 

indicates that the mean �� is the third highest variable in terms of influence on the map, 

it is only the twelfth highest variable for the SOM in which 60-min averaging was em-

ployed. For the purpose of this study and because computational power is not a limiting 

factor for this number and length of input fields, we use all 14 variables to maintain the 

highest possible accuracy in identification of the open water and ice cover modes. 

A visual inspection of the SOM output for the AZFP data shows that the algorithm 

appears to be quite skillful in separating open water from sea ice cover. An example from 

7 August 2016 (Figure 10), provides an example of mostly open water but with ice keels 

up to ~12 m depth occasionally passing over the mooring. In this example, which is well 

representative of any randomly selected time interval, the algorithm appears to correctly 

identify the vast majority of unambiguous instances of sea ice and open water based on 

analyst interpretation. 

 

Figure 10. Plot of �� with the SOM analysis for 7 August 2016 with accompanying mostly cloud-

free true color Terra/MODIS satellite image. The full-resolution �� time series ((a); 20-s ping inter-

val) from the AZFP in the NE Chukchi Sea is plotted in gray, with each 15-min period �� mean 

marked as Mode 1 (open water; red) or Mode 2 (ice cover; blue) according to the SOM. The red 

marker’s point in the satellite image (b) shows the location of the CEO moorings. 

Inspection of the SOM maps for the AZFP data suggests that the transition between 

open water and sea ice during freeze-up typically happens relatively quickly (on the order 

of hours to days) in November or December, whereas the break-up transition from ice 

cover to open water in May to September is often a more drawn-out process, occurring 

over weeks or months, with many “false break-ups” (as defined by Rolph et al. [49]) oc-

curring before the open-water season is sustained. It is during this break-up transition 

(a) (b) 
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period that the SOM map appears to have the greatest difficulty in delineating open water 

and sea ice, with occasional open-water ensembles being unrealistically identified at 1–2 

m depth. Some of these instances are consequences of the 15-min averaging, wherein oc-

casional deep keels are present in an ensemble that is primarily composed of open water. 

Other ambiguously classified open-water ensembles may be due to changes in the acous-

tic properties of sea ice as it melts, a characteristic that warrants further study. To assess 

the reliability of the SOM, we apply a threshold approach and assume that any 15-min 

ensemble of �� greater than 0.5 m is likely to be sea ice, noting that large wind-waves 

tend to average out close to zero over 15 min of measurements. Such ensembles identified 

by the SOM as open water make up ~0.29% of the six-year dataset, or about the equivalent 

of one day’s worth of ambiguously classified ensembles per year. 

Analysis of the AZFP dataset by the SOM provides insight to the physical conditions 

of the surface ocean and ice environment over the CEO mooring. For example, examining 

the SOM BMU for 23 September 2014 shows that, unsurprisingly, all of these ensembles 

are identified as open water (Figure 11a). In contrast, 3 December 2014 (Figure 11b) is 

identified by the SOM as entirely ice-covered, with the exception of a single 15-min inter-

val just after 03:00 GMT, at the beginning of the longest of the near-zero ��  periods, 

which we identify as a potential lead. Plotting only �� with the SOM BMU here can result 

in a confusing picture of a lead persisting for about 75 min, yet with only the first 15-min 

ensemble identified as open water. However, �� reveals additional information: the am-

plitude of �� gradually decreases after the initial appearance of open water. In this in-

stance, a lead appears over the mooring within the time period covered by the open-water 

ensemble. The next ensemble is identified as ice-covered. This observation suggests that 

either the lead was partially covered by thin ice that occupied the side of the lead that was 

last to pass over the mooring, or that an initially open-water lead may have developed a 

thin ice covering during that time period. The other two near-zero �� periods (at approx-

imately 18:00 and 21:00 GMT) on 3 December 2014 both include �� values near 0 dB, in-

dicating that some periods of open water likely occurred, but are too short in duration to 

be identified by the SOM as open water using the 15-min averaging period. These analyses 

suggest that due to the contrast in acoustic character of the reflected pings, we are able to 

distinguish leads with open water from leads with thin ice cover, even though the differ-

ence in ice draft might be too small to make this distinction using �� alone. 

 

Figure 11. Plots of �� (m) and SOM analysis for representative 24-h intervals, colored by �� (dB). 

�� from the AZFP dataset at the CEO site in the NE Chukchi Sea is shown for the open-water inter-

val (a), and the ice-covered interval (b). Above each plot of �� is the SOM BMU for each ensemble, 

identifying it as either ice cover (blue) or open water (red). 

To independently assess the behavior and fidelity of the SOM we can compare the 

�� estimates and SOM BMUs with satellite imagery captured over the mooring site. In 

Figure 12, we find four intervals representing different ice conditions and compare �� for 
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those intervals to true color Terra/MODIS satellite images (NASA Worldview; 

https://worldview.earthdata.nasa.gov ; accessed 4 February 2022). 

The image of 15 March 2015 (Figure 12a) shows that the pack ice field surrounding 

the mooring (the red marker in Figure 12) appears mostly continuous, with few leads ap-

parent in the 250 m resolution satellite image. In this case, no open-water ensembles ap-

pear in the SOM BMU. For 27 May 2015 (Figure 12b), the ice field has begun breaking up 

and consists of many individual floes with open-water leads between them. On this day, 

several short-duration (i.e., one hour or less) open-water ensembles are identified by the 

SOM. Finally, on 22 July 2015 (Figure 12c), the CEO is surrounded mostly by open water 

in the midst of a field of sparse ice floes, which are detected in the SOM. In conjunction 

with the �� and BMU time series, these satellite images provide some visual confirma-

tion of the ability for the SOM algorithm to classify sea ice and open-water features within 

the AZFP dataset. 

Over 1–4 June 2017 (Figure 13) the CEO site is near the edge of the pack ice and the 

SOM indicates an incursion of sea ice for approximately two days; the satellite record re-

veals the presence of a large ice floe that drifts over the mooring early on 2 June. The large 

floe is preceded by smaller floes on 1 June, which is reflected both in the SOM BMU and 

the satellite image. The large floe then drifts away from the CEO late on 3 June, leaving 

purely open-water conditions at the CEO site on 4 June. 

A potential application following separation of open-water ensembles from ice-cov-

ered ensembles is the statistical characterization of thermodynamically grown ice and ice 

thickened mechanically due to rafting and ridging. The SOM can be used to separate out 

open-water ensembles, which allows us to calculate draft statistics for only the ice-covered 

ensembles. Krishfield et al. [31] demonstrated a method for tracking changes in categories 

of ice (e.g., new ice, first-year ice, or rafted/ridged ice) based on modal ice thickness esti-

mates over 10-day means. Fukamachi et al. [18] found that calculating the statistical draft 

values for 5-day intervals revealed two modes, the larger of which continuously increased 

throughout the winter season and represented the growth of level ice. The potential of 

using this dataset to track changes in the undeformed ice thickness above the mooring site 

can be demonstrated by examining time series of �� estimates for three days approxi-

mately one month apart during the winter season of the 2014–2015 deployment: 3 Decem-

ber 2014 (Figure 14a), 5 January 2015 (Figure 14b), and 14 February 2015 (Figure 14c). His-

tograms of the �� estimates for each day show modal peaks that correspond to the level 

ice for that day, and which progressively thickens through the time series and the course 

of the winter. 
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Figure 12. Examples of �� (m) with corresponding SOM BMUs and accompanying mostly cloud-

free true color Terra/MODIS satellite images. Three days from 2015 are plotted for the CEO site in 

the NE Chukchi Sea: 15 March 2015 (a), 27 May 2015 (b), and 22 July 2015 (c), with �� time series 

and SOM BMU for each day (left panels; red = open water, blue = ice cover), and satellite images 

taken in the same day (right panels). The red marker’s point in the satellite images shows the loca-

tion of the CEO moorings. The dashed vertical line in the left panels shows the approximate time of 

day that the satellite images were acquired, and the dashed circles in the right panels show the 

approximate distance ice would drift from the mooring site in a 24-h period while moving at a speed 

of 0.10 m s−1. 
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Figure 13. Time series documenting the passage of a large ice floe over the CEO mooring on 1–4 

June 2017. The lower panel shows the �� estimates for the four days, the middle panel contains the 

SOM BMU for the same timeframe, and the upper panels show one true color Terra/MODIS satellite 

images for each day. The red marker in the satellite images shows the location of the CEO site in the 

NE Chukchi Sea, and the dashed green line shows the approximate time of each day in which the 

images were captured. 

 

Figure 14. Time series and histograms of �� illustrating changes in level ice thickness. Histograms 

of �� estimates (10 cm bins) from the AZFP at the CEO site in the NE Chukchi Sea are plotted for 
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3 December 2014 (a), 5 January 2015 (b), and 14 February 2015 (c), including only pings in which sea 

ice was present above the CEO mooring (left panels). Corresponding time series of �� are plotted 

in the right panels. The mode of the �� estimates, circled in red in the histograms, corresponds to 

the level ice in the �� time series (a representative sample is also circled in red). The dashed black 

line represents the undisturbed sea level. 

3.4. The Surface Wave Field 

The identification of open-water time periods and the �� range statistic provides an 

opportunity to assess the local wave conditions. The 15-min ensemble �� range calcula-

tion (the range of ��, measured in m, is simply the difference between the largest and 

smallest �� values over the course of a 15-min ensemble) shows a close relationship with 

the significant wave height measurement made by the CEO ADCP (Figure 15). Selecting 

the ��  range ensemble that occurs nearest to each 4-hourly ADCP measurement, we 

show (Figure 15b) that that AZFP slightly underestimates the ADCP-derived significant 

wave height but that the two are strongly correlated (r = 0.89, p < 0.001). This result shows 

that the AZFP is also capable of quantifying the wave height envelopes, and at a much 

higher sample rate than the ADCP. The CEO ADCP typically has only enough battery 

power to make one wave measurement ensemble every four hours through the course of 

the year. On the other hand, the ADCP measures the directional wave spectra, which con-

tains considerable information that the AZFP does not capture, so the AZFP data is not a 

replacement for all ADCP-derived wave measurements. 

Although similar, the two records do not represent identical parameters: the ADCP-

derived significant wave height [50] employs a spectral approach that reports (in our ex-

ample here) the dominant wave amplitude, while the AZFP record provides a measure of 

the entire wave field’s amplitude envelope. A combined statistical approach and spectral 

analysis of the �� range could produce an AZFP-derived estimate of the significant wave 

height, though that is beyond the scope of this study. In some applications, the total wave 

field amplitude may be even more useful than the significant wave height (e.g., [51,52]). 

The AZFP dataset may be sufficient to replace a portion of the ADCP waves func-

tionality if mooring design or cost prohibits the installation of a waves-equipped ADCP, 

or to supplement ADCP measurements as a backup in the event of instrument failure. 

Analysis of the measured wave properties is beyond the scope of this study, but we note 

that the AZFP record should allow us to track changes in the spectral character of low-

frequency surface waves (e.g., waves with periods of 40 s and longer) that the CTD pres-

sure record does not resolve. The CTD can resolve only waves having periods of two 

hours and longer. 

 

Figure 15. Time series (a) and scatter plot (b) of significant wave height and range of �� for three 

months of the open-water season of 2015. Significant wave height was recorded by the ADCP in-

stalled on the one of the CEO moorings in the NE Chukchi Sea (in red), and range of �� (15-min 

ensembles, in gray) is calculated from the AZFP, also from the CEO. The black line in Figure 15b 
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represents the least-squares best fit line; with accompanying correlation statistics are noted on the 

panel. 

4. Discussion 

Time series of �� estimates allow for the calculation of metrics and statistics for sea 

ice draft and wave amplitudes, depending on research needs. The high sampling rate of 

the AZFP allows for the resolution of ice features and open-water events that pass over 

the CEO on the scale of minutes to hours. Thus, we can use this dataset to identify, for 

example, the fraction of an hour in which leads in the sea ice are present above the moor-

ing. This can be used with coincident measurements of ice velocity to calculate sea ice 

concentration, or as a stand-alone metric that speaks to the temporally changing character 

of the sea ice field, or the frequency of the occurrence of sparse ice at the CEO site. While 

an isolated measure of lead recurrence may not be useful in itself, from an ecosystem and 

environmental monitoring point of view, over time such metrics can provide a means to 

assess stability or variability in the system. If the instruments detect changes in the recur-

rence of leads, we may then ask about the importance of such features for brine produc-

tion, for under-ice phytoplankton blooms, and other physical and ecosystem processes 

that may be influenced by the presence of leads.  

In addition to averaging across modestly fine temporal scales (e.g., minutes), we can 

also combine the dataset into coarser-scale (e.g., daily) statistical summaries, which would 

be appropriate for bundling data at the same time scale as passive microwave satellite and 

OISST records, or at the time scales often used in the analyses of passive acoustic data. 

Utilizing the SOM BMUs, we can, for example, calculate the fraction of a given time period 

that contains open water, ice cover, sparse ice flows, ice of any particular draft, waves of 

any particular height, or spectral wave content. Such metrics can contribute to a more 

complete picture of ecosystem conditions at the CEO site and can be used to help evaluate 

the results from numerical models, which often lack in situ data suitable for robust data-

model comparisons in the Arctic. 

Rates of surface heat fluxes between the ocean to the atmosphere, ice production, and 

brine rejection are all affected by the presence of leads in the sea ice [53,54]. However, 

these rates are strongly dependent on the fraction of open water, the processes of refreez-

ing leads, and the presence of young, thin ice [55,56]. Therefore, being able to accurately 

identify periods and dimensions of open water, thin ice, and thick ice will enable more 

precise estimation of ocean–atmosphere heat transfers in the ice-covered months, and im-

pacts of ice formation on water column mixing and dense bottom water formation [53]. 

These estimates can contribute to informing local energy budgets and further updating 

and evaluating oceanographic and climate models. 

While �� produces a measurement of the sea ice draft or wave height at the time of 

detection of the return echo, it does not provide meaningful spatial information beyond 

the mooring site. Data on the velocity of sea ice, for example, combined with ULS draft 

measurements, can be used to estimate the shapes of under-ice features, or the extent of a 

lead passing over the mooring. A complete analysis of the ice and wave environment at a 

site such as the CEO should incorporate velocity data from sources such as an ADCP or 

satellite products. Mahoney et al. [57] performed a comparison of ADCP- and satellite-

based ice velocity data in a study of changes in ice thickness distributions in the Beaufort 

Gyre and found that the resulting distributions were similar.  

Our AZFP sampling setup is based on battery capacity limitations that impose limits 

on resolvable features. The temporal resolution of 10–20 s per ping used in this study ali-

ases the shape of under-ice structures in the presence of typical ice drift speeds. Generally, 

ULS instruments deployed for ice tracking sample at a rate of 1 Hz [27], and thus can 

resolve features having 1-m length scales in the presence of typical ocean currents (e.g., 

0.10 m s−1). For the typical current speed at 10 m depth of about 0.10 m s−1 at the CEO site 

(the 2014–2015 CEO ADCP measured median, mode, and mean speeds of 0.10 m s−1, 0.06 

m s−1, and 0.12 m s−1, respectively) and assuming similar ice speed (e.g., see [58,59]), a 15-
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s ping rate can only identify features (e.g., ice keels or leads) with a Nyquist length scale 

larger than 3 m. However, even these relatively small features will be obscured by 15-min 

averaging. For the 0.10 m s−1 current speed, the 15-min-averaged period is capable of iden-

tifying features with horizontal length scales only larger than 180 m. For an upper bound 

current speed of 1 m s−1 (the maximum observed speed in the 2014–2015 CEO deployment 

was less than 0.60 m s−1), the smallest resolvable length scale extends to 1.8 km. 

Caution should be exercised in statistical analyses and interpretation of �� based on 

ensemble averages. As previously stated, the 15-min ensembles may contain a combina-

tion of open-water and ice-covered pings regardless of how the ensemble is ultimately 

classified by the SOM. Thus, features that are smaller in scale than the averaging period 

may be aliased. In addition, the ensemble averaging can have an effect on the distribution 

of the �� values due to the nonlinear nature of ice keel probability distributions. For ex-

ample, while the mean �� of the six-year full-resolution dataset barely varies (a differ-

ence of ~1 cm) between15-min, hourly, and daily ensembles, the modes vary by up to 8 

cm, and the medians as much as 21 cm. Hence, the ensemble length selection introduces 

biases that could be important for some applications. 

Another inherent limitation of an AZFP installed on a subsurface mooring is that it 

lacks wider environmental context. In the case of the CEO, ascertaining the influence of 

the Hanna Shoal topography on the ice environment at the mooring site and how this 

compares to conditions elsewhere on the Chukchi Sea shelf is important for a variety of 

research needs, such as our ability to understand the variability of rapidly changing hab-

itats for species that depend on sea ice cover that is responding to climate change. To an-

swer this question, the automated processing procedure we have developed here can be 

applied to additional ULS datasets. 

The effectiveness of the SOM is modestly dependent on the input variables that are 

provided to the algorithm. Histograms of each of the statistics used in this study (Figure 16) 

illustrate how each of these contrast in open-water and ice-covered conditions. For most 

�� histograms, the peaks for open-water and ice-covered ensembles are often in the same 

range of values, but the character of the curves contrast. Distributions for the ice-covered 

ensembles tend to be skewed toward the positive direction and represent a wider range 

of �� values, as they include ice keels, whereas the open-water curves tend to be more 

symmetrical (consistent with waves oscillating about undisturbed sea level) with a shorter 

range of �� values and sharper peaks. In most cases, the histograms of �� exhibit peaks 

at different ranges of �� for open water than for ice cover, though the character of the 

curves varies. All together, these histograms further illustrate how we can take advantage 

of these differences to distinguish open water from ice cover, and why these variables are 

appropriate for use in the SOM algorithm. 

A number of future steps could further improve the algorithm that produces ��. For 

instance, the configuration of our AZFP offers opportunities to gather more information 

by investigating the acoustic returns of three additional frequencies. We can also continue 

to explore the functionality of the SOM algorithm; for example, the SOM could be config-

ured to sort the �� ensembles into three or more modes to extract additional facets of the 

ice environment. More research is needed to understand the characteristics of ablating sea 

ice that produces anomalous open-water ensembles during break-up periods at the CEO 

site. Ground-truthing the acoustic determinations using an alternate sea ice identification 

approach (e.g., camera or direct visual observation) is needed to more fully assess the ac-

curacy of the SOM BMU assignments. 



J. Mar. Sci. Eng. 2022, 10, 1577 27 of 31 
 

 

 

Figure 16. Histograms for each of the statistics provided to the SOM for the six-year AZFP dataset. 

The statistics used are: mean (a), standard deviation (b), range (d), skewness (f), kurtosis (g), mini-

mum (c), and maximum (e) for both �� (left panel of each pair) and �� (right panel of each pair). 

Ensembles identified by the SOM as open water for the CEO site in the NE Chukchi Sea are plotted 

in orange, and those identified as ice cover are plotted in blue. Note the different axes for each var-

iable pair. 

5. Conclusions 

The subsurface oceanographic moorings of the CEO site enable physical, chemical, 

and biological sampling of the water column all year long, allowing us to build a more 

complete understanding of the seasonal environmental variations near Hanna Shoal. The 

AZFP, a ULS installed on one of the CEO moorings, provides a high-resolution dataset 

from which we can extract information that helps us characterize the sea ice and surface 

wave environment at the CEO site. 
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We developed a method for calculating a time series of ��, the distance between the 

local undisturbed sea level and the ocean–ice or ocean–atmosphere interface. Corrections 

for instrument tilt, speed of sound, and water level allow us to resolve the sea surface 

reflection interface to within approximately 0.06 ± 0.09 m (mean and standard error). 

As the processing of high-resolution acoustic datasets for evaluating ice draft has tra-

ditionally been a labor-intensive process, we applied a machine-learning technique to lev-

erage acoustic differences between the ocean-sea ice and the ocean–atmosphere interfaces 

for identifying which pings from the AZFP pings occurred under open water or sea ice 

cover. The approach is more efficient than the often manual procedures employed by pre-

vious studies. The procedure allows us to implement automated corrections of �� for pe-

riods of ice cover when the ocean–atmosphere interface is obscured. 

With the resulting dataset, we are able to detect short-duration features such as the 

frequency of sparse ice floes, leads, and sea ice draft. When combined with ice velocity 

data from other sources, this also allows for the construction of lead width and ice volume 

advection estimates at the CEO site. We can compute metrics such as the fraction of time 

in a given period that contains ice leads, or the frequency of occurrence for ice keels of a 

particular draft. With AZFP estimates of wave height, we can quantify temporal changes 

in the wave field over the mooring. All together, the applications of this high-resolution 

acoustic dataset enable a richer characterization of the biologically important physical en-

vironment at the mooring site, and the algorithms developed facilitate the efficient pro-

cessing of ULS data from existing and future mooring deployments. 
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